skip to main content

Title: Capturing the effects of particle heterogeneity on adsorption in a fixed bed

To efficiently design new adsorption systems, industrial scale fixed beds are often scaled down to bench‐top experiments and/or modeled using computational fluid dynamics (CFD). While there has been considerable work exploring adsorption of volatile organics onto activated carbon fixed beds in the literature, this article attempts to reckon with the high variability of adsorption capacities observed at small scales and improve small‐scale experiments for industrial scale reactor design. This study integrates experimental results with CFD simulations, which can explicitly model system heterogeneities and their influence on adsorption by resolving local packing densities and flow paths. Activated carbon physical properties were determined through surface area analysis, proximate analysis, and toluene adsorption (measured via mass spectroscopy). Variability in the small‐scale systems was not attributed to surface area or carbon content, as is often stated, but instead was due to local packing density variations and the heterogeneity of particle size distributions.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many materials systems comprise complex structures where multiple materials are integrated to achieve a desired performance. Often in these systems, it is a combination of both the materials and their structure that dictate performance. Here the authors layout an integrated computational–statistical–experimental methodology for hierarchical materials systems that takes a holistic design approach to both the material and structure. The authors used computational modeling of the physical system combined with statistical design of experiments to explore an activated carbon adsorption bed. The large parameter space makes experimental optimization impractical. Instead, a computational–statistical approach is coupled with physical experiments to validate the optimization results. 
    more » « less
  2. Abstract

    Geological storage of carbon dioxide (CO2) in depleted gas reservoirs represents a cost-effective solution to mitigate global carbon emissions. The surface chemistry of the reservoir rock, pressure, temperature, and moisture content are critical factors that determine the CO2 adsorption capacity and storage mechanisms. Shale-gas reservoirs are good candidates for this application. However, the interactions of CO2 and organic content still need further investigation. The objectives of this paper are to (i) experimentally investigate the effect of pressure and temperature on the CO2 adsorption capacity of activated carbon, (ii) quantify the nanoscale interfacial interactions between CO2 and the activated carbon surface using Monte Carlo molecular modeling, and (iii) quantify the correlation between the adsorption isotherms of activated carbon-CO2 system and the actual carbon dioxide adsorption on shale-gas rock at different temperatures and geochemical conditions. Activated carbon is used as a proxy for kerogen. The objectives aim at obtaining a better understanding of the behavior of CO2 injection and storage into shale-gas formations.

    We performed experimental measurements and Grand Canonical Monte Carlo (GCMC) simulations of CO2 adsorption onto activated carbon. The experimental work involved measurements of the high-pressure adsorption capacity of activated carbon using pure CO2 gas. Subsequently, we performed a series of GCMC simulations to calculate CO2 adsorption capacity on activated carbon to validate the experimental results. The simulated activated carbon structure consists of graphite sheets with a distance between the sheets equal to the average actual pore size of the activated carbon sample. Adsorption isotherms were calculated and modeled for each temperature value at various pressures.

    The adsorption of CO2 on activated carbon is favorable from the energy and kinetic point of view. This is due to the presence of a wide micro to meso pore sizes that can accommodate a large amount of CO2 particles. The results of the experimental work show that excess adsorption results for gas mixtures lie in between the results for pure components. The simulation results agree with the experimental measurements. The strength of CO2 adsorption depends on both surface chemistry and pore size of activated carbon. Once strong adsorption sites within nanoscale network are established, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. The outcomes of this paper provides new insights about the parameters affecting CO2 adsorption and storage in shale-gas reservoirs, which is critical for developing standalone representative models for CO2 adsorption on pure organic carbon.

    more » « less
  3. Abstract

    A comprehensive computational fluid dynamic (CFD) model of CEES‐developed polyethylenimine impregnated protonated titanate nanotubes (PEI‐PTNTs) was developed using the Multiphase Flow with Interphase eXchanges (MFiX) package to evaluate the performance of the PEI‐PTNTs in a 1‐MW pilot‐scale carbon capture reactor developed by the National Energy Technology Laboratory (NETL). In this CFD model, the momentum, continuity, and energy transport equations were integrated with the first‐order chemistry model for chemical kinetics of heterogeneous reactions to predict the adsorption of CO2onto amine‐based sorbent particles and the reactor temperature. Based on the amount of the CO2adsorption obtained in the small‐scale experiment, the coefficients for the chemical reaction equations of PEI‐PTNTs are adjusted. The adjusted PEI‐PTNTs model is applied to the simplified numerical model of 1‐MW pilot‐scale carbon capture system, which is calibrated through the comparison between our simulation results and the results provided by NETL. This calibrated CFD model is used for selecting the optimized flow rate of the gas phase. Our study shows that the optimized gas flow rate to absorb 100% CO2without loss is 1.5 kg/s, but if higher absorption rate is preferable despite some loss of CO2absorption in the reactor, a higher flow rate than 1.5 kg/s can be selected.

    more » « less
  4. Abstract

    This study examines the spatial and temporal variability of eddy kinetic energy over the Northeast Shelf using observations of surface currents from a unique array of six high frequency radar systems. Collected during summer and winter conditions over three consecutive years, the horizontal scales present were examined in the context of local wind and hydrographic variability, which were sampled concurrently from moorings and autonomous surface vehicles. While area‐averaged mean kinetic energy at the surface was tightly coupled to wind forcing, eddy kinetic energy was not, and was lower in magnitude in winter than summer in all areas. Kinetic energy wavenumber spectral slopes were generally near k−5/3, but varied seasonally, spatially, and between years. In contrast, wavenumber spectra of surface temperature and salinity along repeat transect lines had sharpk−3spectral slopes with little seasonal or inter‐annual variability. Radar‐based estimates of spectral kinetic energy fluxes revealed a mean transition scale of energy near 18 km during stratified months, but suggested much longer scales during winter. Overall, eddy kinetic energy was unrelated to local winds, but the up‐ or down‐scale flux of kinetic energy was tied to wind events and, more weakly, to local density gradients.

    more » « less
  5. Slag and Al/Mg oxide modified Douglas fir biochar (AMOB) were compared for their phosphate adsorbing abilities for use individually or in combination for simulated agriculture run-off remediation in wetlands. Aqueous batch and column sorption experiments were performed for both low-cost materials. AMOB was prepared in bulk using a novel green method. Material analyses included XRD, elemental analysis, SEM, EDX, and BET. Biochar and slag have different phosphate removal mechanisms. In short residence times (≤2 h), adsorption phenomena dominate for both adsorbents. Surface area likely plays a role in adsorption performance; slag was measured to be 4.1 m2/g while biochar’s surface area was 364.1 m2/g. In longer residence times (>2 h), the slow leaching of metals (Ca, Al, and Mg) from slag continue to remove phosphate through the precipitation of metal phosphates. In 24 h, slag removed more free phosphate from the solution than AMOB. Preliminary fixed bed column adsorption of slag or AMOB alone and in tandem was performed adopting a scaled-up model that can be used to remediate agricultural runoff with high phosphate content. Additionally, a desorption study was performed to analyze the efficiency of material regeneration. While AMOB does not release any adsorbed phosphates, slag slowly releases 5.7% adsorbed phosphate over seven days. 
    more » « less