skip to main content


Search for: All records

Award ID contains: 1727316

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To efficiently design new adsorption systems, industrial scale fixed beds are often scaled down to bench‐top experiments and/or modeled using computational fluid dynamics (CFD). While there has been considerable work exploring adsorption of volatile organics onto activated carbon fixed beds in the literature, this article attempts to reckon with the high variability of adsorption capacities observed at small scales and improve small‐scale experiments for industrial scale reactor design. This study integrates experimental results with CFD simulations, which can explicitly model system heterogeneities and their influence on adsorption by resolving local packing densities and flow paths. Activated carbon physical properties were determined through surface area analysis, proximate analysis, and toluene adsorption (measured via mass spectroscopy). Variability in the small‐scale systems was not attributed to surface area or carbon content, as is often stated, but instead was due to local packing density variations and the heterogeneity of particle size distributions.

     
    more » « less
  2. Dendrite growth affects material systems across applications as diverse as lithium batteries, organic light emitting diodes, turbine blades, and biological sensors. Their unique crystal structure and ability to physically see growth make for a unique undergraduate laboratory experience. This experiment uses dendrite growth to explore the physical and chemical driving forces behind dendrite growth through a set of viscous, supersaturated solutions of varying ammonium chloride and gelatin concentrations. The degree of NH4Cl supersaturation determines growth rate, which can be mediated by the gelatin limiting diffusional mass transfer. This exercise was designed for a material science course, though it could easily be adapted to an inorganic or general chemistry course. Through this experiment, students are introduced to optical microscopy for quantitative analysis, a common, inexpensive analytical research tool rarely seen in the undergraduate laboratory. When chemical driving forces are dominant (low gelatin, high salt concentrations), a more ordered dendrite structure forms, with primary branches at 90° angles. Conversely, as diffusion becomes more dominant, a more disordered, denser dendrite structure is observed and the growth rate is slower. Students use both qualitative and quantitative observations to make connections between a fundamental laboratory exercise and critical materials processing techniques that rely on physicochemical driving forces. 
    more » « less
  3. Many materials systems comprise complex structures where multiple materials are integrated to achieve a desired performance. Often in these systems, it is a combination of both the materials and their structure that dictate performance. Here the authors layout an integrated computational–statistical–experimental methodology for hierarchical materials systems that takes a holistic design approach to both the material and structure. The authors used computational modeling of the physical system combined with statistical design of experiments to explore an activated carbon adsorption bed. The large parameter space makes experimental optimization impractical. Instead, a computational–statistical approach is coupled with physical experiments to validate the optimization results. 
    more » « less