skip to main content


Title: Flexible and Accurate Evaluation of Gravitational-wave Malmquist Bias with Machine Learning
Abstract

Many astronomical surveys are limited by the brightness of the sources, and gravitational-wave searches are no exception. The detectability of gravitational waves from merging binaries is affected by the mass and spin of the constituent compact objects. To perform unbiased inference on the distribution of compact binaries, it is necessary to account for this selection effect, which is known as Malmquist bias. Since systematic error from selection effects grows with the number of events, it will be increasingly important over the coming years to accurately estimate the observational selection function for gravitational-wave astronomy. We employ density estimation methods to accurately and efficiently compute the compact binary coalescence selection function. We introduce a simple pre-processing method, which significantly reduces the complexity of the required machine-learning models. We demonstrate that our method has smaller statistical errors at comparable computational cost than the method currently most widely used allowing us to probe narrower distributions of spin magnitudes. The currently used method leaves 10%–50% of the interesting black hole spin models inaccessible; our new method can probe >99% of the models and has a lower uncertainty for >80% of the models.

 
more » « less
Award ID(s):
1912594
NSF-PAR ID:
10363838
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 76
Size(s):
["Article No. 76"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties of the individual binaries and the survey selection bias. These Monte Carlo integrals are subject to fundamental statistical uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred inference is unaffected; however, these works have neglected the question of whether sufficient accuracy can also be achieved. In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework for verifying that astrophysical inferences made with the gravitational-wave transient catalogue are accurate. Applying our framework to models used by the LIGO–Virgo–KAGRA collaboration and in the wider literature, we find that Monte Carlo uncertainty in estimating the survey selection bias is the limiting factor in our ability to probe narrow population models and this will rapidly grow more problematic as the size of the observed population increases.

     
    more » « less
  2. ABSTRACT

    We constrain the orbital period (Porb) distribution of low-mass detached main-sequence eclipsing binaries (EBs) with light-curves from the Zwicky Transient Facility (ZTF), which provides a well-understood selection function and sensitivity to faint stars. At short periods (Porb ≲ 2 d), binaries are predicted to evolve significantly due to magnetic braking (MB), which shrinks orbits and ultimately brings detached binaries into contact. The period distribution is thus a sensitive probe of MB. We find that the intrinsic period distribution of low-mass (0.1 ≲ M1/M⊙ < 0.9) binaries is basically flat (${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^0$) from Porb = 10 d down to the contact limit. This is strongly inconsistent with predictions of classical MB models based on the Skumanich relation, which are widely used in binary evolution calculations and predict ${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^{7/3}$ at short periods. The observed distributions are best reproduced by models in which the magnetic field saturates at short periods with a MB torque that scales roughly as $\dot{J}\propto P_{\rm orb}^{-1}$, as opposed to $\dot{J} \propto P_{\rm orb}^{-3}$ in the standard Skumanich law. We also find no significant difference between the period distributions of binaries containing fully and partially convective stars. Our results confirm that a saturated MB law, which was previously found to describe the spin-down of rapidly rotating isolated M dwarfs, also operates in tidally locked binaries. We advocate using saturated MB models in binary evolution calculations. Our work supports previous suggestions that MB in cataclysmic variables (CVs) is much weaker than assumed in the standard evolutionary model, unless mass transfer leads to significant additional angular momentum loss in CVs.

     
    more » « less
  3. Abstract The delay time distribution of neutron star mergers provides critical insights into binary evolution processes and the merger rate evolution of compact object binaries. However, current observational constraints on this delay time distribution rely on the small sample of Galactic double neutron stars (with uncertain selection effects), a single multimessenger gravitational wave event, and indirect evidence of neutron star mergers based on r -process enrichment. We use a sample of 68 host galaxies of short gamma-ray bursts to place novel constraints on the delay time distribution and leverage this result to infer the merger rate evolution of compact object binaries containing neutron stars. We recover a power-law slope of α = − 1.83 − 0.39 + 0.35 (median and 90% credible interval) with α < −1.31 at 99% credibility, a minimum delay time of t min = 184 − 79 + 67 Myr with t min > 72 Myr at 99% credibility, and a maximum delay time constrained to t max > 7.95 Gyr at 99% credibility. We find these constraints to be broadly consistent with theoretical expectations, although our recovered power-law slope is substantially steeper than the conventional value of α = −1, and our minimum delay time is larger than the typically assumed value of 10 Myr. Pairing this cosmological probe of the fate of compact object binary systems with the Galactic population of double neutron stars will be crucial for understanding the unique selection effects governing both of these populations. In addition to probing a significantly larger redshift regime of neutron star mergers than possible with current gravitational wave detectors, complementing our results with future multimessenger gravitational wave events will also help determine if short gamma-ray bursts ubiquitously result from compact object binary mergers. 
    more » « less
  4. null (Ed.)
    ABSTRACT Compact white dwarf (WD) binaries are important sources for space-based gravitational-wave (GW) observatories, and an increasing number of them are being identified by surveys like Extremely Low Mass (ELM) and Zwicky Transient Facility (ZTF). We study the effects of non-linear dynamical tides in such binaries. We focus on the global three-mode parametric instability and show that it has a much lower threshold energy than the local wave-breaking condition studied previously. By integrating networks of coupled modes, we calculate the tidal dissipation rate as a function of orbital period. We construct phenomenological models that match these numerical results and use them to evaluate the spin and luminosity evolution of a WD binary. While in linear theory the WD’s spin frequency can lock to the orbital frequency, we find that such a lock cannot be maintained when non-linear effects are taken into account. Instead, as the orbit decays, the spin and orbit go in and out of synchronization. Each time they go out of synchronization, there is a brief but significant dip in the tidal heating rate. While most WDs in compact binaries should have luminosities that are similar to previous traveling-wave estimates, a few per cent should be about 10 times dimmer because they reside in heating rate dips. This offers a potential explanation for the low luminosity of the CO WD in J0651. Lastly, we consider the impact of tides on the GW signal and show that the Laser Interferometer Space Antenna (LISA) and TianGO can constrain the WD’s moment of inertia to better than $1{{\ \rm per\ cent}}$ for centi-Hz systems. 
    more » « less
  5. Abstract

    We search for features in the mass distribution of detected compact binary coalescences which signify the transition between neutron stars (NSs) and black holes (BHs). We analyze all gravitational-wave (GW) detections by the LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (LVK) made through the end of the first half of the third observing run, and find clear evidence for two different populations of compact objects based solely on GW data. We confidently (99.3%) find a steepening relative to a single power law describing NSs and low-mass BHs below2.40.5+0.5M, which is consistent with many predictions for the maximum NS mass. We find suggestions of the purported lower mass gap between the most massive NSs and the least massive BHs, but are unable to conclusively resolve it with current data. If it exists, we find the lower mass gap’s edges to lie at2.20.5+0.7Mand6.01.4+2.4M. We reexamine events that have been deemed “exceptional” by the LVK collaborations in the context of these features. We analyze GW190814 self-consistently in the context of the full population of compact binaries, finding support for its secondary to be either a NS or a lower mass gap object, consistent with previous claims. Our models are the first to accommodate this event, which is an outlier with respect to the binary BH population. We find that GW200105 and GW200115 probe the edges of, and may have components within, the lower mass gap. As future data improve global population models, the classification of these events will also improve.

     
    more » « less