Lacustrine chemical sediments of the Wilkins Peak Member, Eocene Green River Formation potentially preserve paleoclimate information relating to the conditions of their formation and preservation within the lake basin during the Early Eocene Climatic Optimum. The Green River Formation comprises the world’s largest sodium-carbonate evaporite deposit in the form of trona (Na2CO3⋅NaHCO3⋅2H2O) in the Bridger sub-basin and nahcolite (NaHCO3) in the neighboring Piceance Creek basin. Modern analogues suggest that these minerals necessitate the existence of an alkaline source water. Detrital provenance geochronometers suggest that the most likely source for volcanic waters to the Greater Green River Basin is the Colorado Mineral Belt, connected to the basin via the Aspen paleo-river. We tested the hypothesis that magmatic waters from the Colorado Mineral Belt could have supplied the Greater Green River Basin with the alkalinity needed to precipitate sodium-carbonate evaporites that are preserved in the Wilkins Peak Member by numerically simulating the evaporation of modern soda spring waters from northwestern Colorado at various temperature and atmospheric pCO2 conditions. We compare the resulting simulated evaporite sequences of the modern soda spring waters to the mineralogy preserved within the Wilkins Peak Member. Simulated evaporation of Steamboat Springs water produces the closest match to core observations and mineralogy. These simulations provide constraints on the salinities at which various minerals precipitated in the Wilkins Peak Member as well as insights into the regional temperature (>15ºC for gaylussite and trona; >27º for pirssonite and trona) and pCO2 conditions (<1200ppm for gaylussite and trona) during the EECO.
more »
« less
Spring origin of Eocene carbonate mounds in the Green River Formation, Northern Bridger Basin, Wyoming, USA
Abstract Modern and ancient lacustrine carbonate build‐ups provide uniquely sensitive sedimentary and geochemical records for understanding the interaction between tectonics, past climates, and local and regional scale basin hydrology. Large (metre to decametre), well‐developed carbonate mounds in the Green River Formation have long been recognized along the margins of an Eocene lake, known as Lake Gosiute. However, their mode of origin and significance with respect to palaeohydrology remain controversial. Here, new sedimentological, Sr isotope data and structural evidence show that significant spring discharge led to the formation of a decametre size complex of shoreline carbonate mounds in the upper Wilkins Peak Member of the Green River Formation at Little Mesa and adjacent areas in the Bridger Basin, Wyoming, USA. Sedimentological evidence indicates that spring discharge was predominantly subaqueous but was, at times, also subaerial, which produced tufa cascades and micro‐rimstone dam structures. The87Sr/86Sr ratios measured from these subaerial spring deposits are less radiogenic (87Sr/86Sr = 0.71040 to 0.71101) than contemporaneous palaeolake carbonates (87Sr/86Sr = 0.71195 to 0.71561) because their parent groundwaters likely interacted with less‐radiogenic Palaeozoic carbonate. Calcite‐cemented sandstone cones and spires (87Sr/86Sr = 0.71037 to 0.71057) in the Wasatch Formation directly below the spring deposits suggest that groundwaters derived from Palaeozoic carbonates preferentially flowed along thrust faults. These results imply that high spring discharge coincided with lake high stands of the upper Wilkins Peak Member, suggesting that recharge at the north‐west margin of the Bridger Basin contributed to Lake Gosiute’s water budget and lowered the salinity of an underfilled, evaporative lake basin. The findings of this study provide criteria for the recognition of groundwater discharge in palaeolake systems which may lead to the discovery of palaeospring systems in other ancient lake deposits.
more »
« less
- PAR ID:
- 10363939
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Sedimentology
- Volume:
- 68
- Issue:
- 6
- ISSN:
- 0037-0746
- Page Range / eLocation ID:
- p. 2334-2364
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chemical sediments from the Early Eocene Green River Formation can be used for assessing hydroclimate and basin evolution during their deposition. The Wilkins Peak Member (WPM) of the Green River Formation contains a relatively continuous record of perennial closed-basin saline lake deposition in the Bridger Basin, southwest Wyoming, from approximately 51.6 to 49.8 Ma. The volumes and paragenesis of authigenic chemical sediments in the WPM are intrinsically related to the chemical evolution of basin brines. The geographic distribution of those chemical sediments across the Bridger Basin relates to the syn- and post-depositional tectonic history of the basin. In this study, we integrated thermodynamic modeling of chemical evolution of lake brines with chemostratigraphic and lithostratigraphic interpretations of the basin-center Solvay S-34-1 core to evaluate physical and chemical changes to and within ancient Lake Gosiute during the Early Eocene. Fine-scale X-ray fluorescence (XRF) scanning along the length of the core provides a high-resolution chemical stratigraphy of the WPM. Thermodynamic modeling of the evaporation of hypothetical inflow waters and lake brines yield predicted sequences of evaporite minerals, allowing estimation of the salinities and evaporated volumes of water required to reach saturation with respect to observed mineral deposits from the basin. The spatial distributions of bedded evaporites allow us to investigate tectonic changes to the basin during and after the deposition of the WPM. Here, we integrate these data to interpret changes in lake-level, salinity, and hydroclimate of ancient Lake Gosiute during the Early Eocene.more » « less
-
Lacustrine evaporites have potential to document ancient terrestrial climates, including temperatures and their seasonal variations, and atmospheric pCO2. The sodium carbonate mineral nahcolite (NaHCO3) in the early Eocene Parachute Creek Member, Green River Formation, Piceance subbasin, indicates elevated pCO2 concentrations (> 680 ppm) in the water column and in the atmosphere if in contact with brine. These data support a causal connection between elevated atmospheric pCO2 and global warmth during the early Eocene Climatic Optimum. Trona (Na2CO3⋅NaHCO3⋅2H2O), not nahcolite, is the dominant sodium carbonate mineral in the coeval Wilkins Peak Member in the Bridger subbasin, which may be explained by interbasin variations in (1) brine chemistry, (2) temperature, and (3) pCO2. These interpretations are based on equilibrium thermodynamics and simulations that evaporate lake water, but they ignore seasonal changes in water column temperature and pCO2. Winter cooling, rather than evaporative concentration, best explains the fine-scale alternations of nahcolite, halite (NaCl), and nahcolite + halite in the Parachute Creek Member. Simulated evaporation of alkaline source waters from the paleo Aspen River at temperatures between 15⁰ and 27⁰ C and pCO2 at or below 1200 ppm produces the observed mineral sequence in the Wilkins Peak Member: gaylussite (Na2CO3⋅CaCO3⋅5H2O) at temperatures < 27⁰ C and pirssonite (Na2CO3⋅CaCO3⋅2H2O) > 27⁰ C (both now replaced by shortite Na2CO3·2CaCO3), then northupite (Na3Mg(CO3)2Cl), trona, and halite. The challenge of determining paleo-lake temperatures in the Bridger and Piceance subbasins using microthermometry has now been solved using femtosecond lasers that promote nucleation of vapor bubbles in brine inclusions without deforming the halite host crystal. This method shows general agreement with thermodynamic-based calculations and will be used to document mean annual temperatures in the Greater Green River Basin.more » « less
-
Abstract We use geochemical and petrographic data from anoxic sequences of the Nicobar Fan to document extensive marine silicate weathering (MSiW) in the input sediment of the Sumatra subduction zone and the conditions that result in authigenic minerals originating from this reaction: precipitation of authigenic carbonate—which sequesters carbon—and formation of authigenic clay—which releases CO2. Increase in87Sr/86Sr in pore fluids from International Ocean Discovery Program Expedition 362 (Site U1480 to 0.71376 and Site U1481 to 0.71296) reveals a radiogenic strontium contribution from alteration of the Himalayan continental sediment that dominates the Nicobar Fan. Peaks in the dissolved strontium isotope data coincide with zones of methane presence, consistent with MSiW reactions driven by CO2generation during methanogenesis. Later‐stage fan sequences from 24 to 400 mbsf (meters below seafloor) contain only minor carbonate with87Sr/86Sr ratios that deviate only slightly from the co‐eval seawater values (0.70920–0.70930); geochemical data in this zone point to a contribution of authigenic clay formation. In contrast, microscopy and elemental mapping of the carbonate‐cemented zones in the earliest fan deposits (>780 mbsf) show replacement of feldspars and dense minerals by carbonate, which ranges in volume from a few percent of the grain to near total grain obliteration. This deeper authigenic carbonate is significantly enriched in radiogenic87Sr (0.71136–0.71328). Thus, MSiW leads to distinct products, likely in response to a weathering‐derived supply of silica in the younger setting versus calcium enrichment via diffusion from oceanic basement in the older sequence.more » « less
-
The Green River Formation of Wyoming, USA, is host to the world’s largest known lacustrine sodium carbonate deposits, which accumulated in a closed basin during the early Eocene greenhouse. Alkaline brines are hypothesized to have been delivered to ancient Gosiute Lake by the Aspen paleoriver that flowed from the Colorado Mineral Belt. To precisely trace fluvial provenance in the resulting deposits, we conducted X-ray fluorescence analyses and petrographic studies across a suite of well-dated sandstone marker beds of the Wilkins Peak Member of the Green River Formation. Principal component analysis reveals strong correlation among elemental abundances, grain composition, and sedimentary lithofacies. To isolate a detrital signal, elements least affected by authigenic minerals, weathering, and other processes were included in a principal component analysis, the results of which are consistent with petrographic sandstone modes and detrital zircon chronofacies of the basin. Sandstone marker beds formed during eccentricity-paced lacustrine lowstands and record the migration of fluvial distributary channel networks from multiple catchments around a migrating depocenter, including two major paleorivers. The depositional topography of these convergent fluvial fans would have inversely defined bathymetric lows during subsequent phases of lacustrine inundation, locations where trona could accumulate below a thermocline. Provenance mapping verifies fluvial connectivity to the Aspen paleoriver and to sources of alkalinity in the Colorado Mineral Belt across Wilkins Peak Member deposition, and shows that the greatest volumes of sediment were delivered from the Aspen paleoriver during deposition of marker beds A, B, D, and I, each of which were deposited coincident with prominent “hyperthermal” isotopic excursions documented in oceanic cores.more » « less
An official website of the United States government
