skip to main content


Search for: All records

Award ID contains: 1813278

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Modern and ancient lacustrine carbonate build‐ups provide uniquely sensitive sedimentary and geochemical records for understanding the interaction between tectonics, past climates, and local and regional scale basin hydrology. Large (metre to decametre), well‐developed carbonate mounds in the Green River Formation have long been recognized along the margins of an Eocene lake, known as Lake Gosiute. However, their mode of origin and significance with respect to palaeohydrology remain controversial. Here, new sedimentological, Sr isotope data and structural evidence show that significant spring discharge led to the formation of a decametre size complex of shoreline carbonate mounds in the upper Wilkins Peak Member of the Green River Formation at Little Mesa and adjacent areas in the Bridger Basin, Wyoming, USA. Sedimentological evidence indicates that spring discharge was predominantly subaqueous but was, at times, also subaerial, which produced tufa cascades and micro‐rimstone dam structures. The87Sr/86Sr ratios measured from these subaerial spring deposits are less radiogenic (87Sr/86Sr = 0.71040 to 0.71101) than contemporaneous palaeolake carbonates (87Sr/86Sr = 0.71195 to 0.71561) because their parent groundwaters likely interacted with less‐radiogenic Palaeozoic carbonate. Calcite‐cemented sandstone cones and spires (87Sr/86Sr = 0.71037 to 0.71057) in the Wasatch Formation directly below the spring deposits suggest that groundwaters derived from Palaeozoic carbonates preferentially flowed along thrust faults. These results imply that high spring discharge coincided with lake high stands of the upper Wilkins Peak Member, suggesting that recharge at the north‐west margin of the Bridger Basin contributed to Lake Gosiute’s water budget and lowered the salinity of an underfilled, evaporative lake basin. The findings of this study provide criteria for the recognition of groundwater discharge in palaeolake systems which may lead to the discovery of palaeospring systems in other ancient lake deposits.

     
    more » « less
  2. Paleohydrologic proxy data and climate models show how and why eccentricity and precession influenced early Eocene hydroclimate. 
    more » « less
    Free, publicly-accessible full text available August 4, 2024
  3. Lacustrine strata are often among the highest-resolution terrestrial paleoclimate archives available. The manner in which climate signals are registered into lacustrine deposits varies, however, as a function of complex sedimentologic and diagenetic processes. The retrieval of reliable records of climatic forcing therefore requires a means of evaluating the potential influence of changing sedimentary transfer functions. Here, we use high-resolution X-ray fluorescence core scanning of the Wilkins Peak Member of the Green River Formation to characterize the long-term evolution of transfer functions in an ancient lacustrine record. Our analysis identifies a shift in the frequency distribution of Milankovitch-band variance between the lower and middle Wilkins Peak Member across a range of temporally calibrated elemental intensity records. Spectral analysis of the lower Wilkins Peak Member shows strong short eccentricity, obliquity, precession, and sub-Milankovitch−scale variability, while the middle Wilkins Peak Member shows strong eccentricity variability and reduced power at higher frequencies. This transition coincides with a dramatic decline in the number and volume of evaporite beds. We attribute this shift to a change in the Wilkins Peak Member depositional transfer function caused by evolving basin morphology, which directly influenced the preservation of bedded evaporite as the paleolake developed from a deeper, meromictic lake to a shallower, holomictic lake. The loss of bedded evaporite, combined with secondary evaporite growth, results in reduced obliquity- and precession-band power and enhanced eccentricity-band power in the stratigraphic record. These results underscore the need for careful integration of basin and depositional system history with cyclostratigraphic interpretation of the dominant astronomical signals preserved in the stratigraphic archive. 
    more » « less
  4. It has long been recognized that lakes can bury large amounts of organic carbon (CORG) in their sediment, with important consequences for conventional and unconventional petroleum resources and potentially for the global carbon cycle. The detailed distribution of lacustrine organic carbon through space and time is important to understanding its commercial and climatic implications, but has seldom been documented in detail. The Green River Formation offers a unique opportunity to improve this understanding, due to extensive Fischer assay analyses of its oil generative potential and to recently published radioisotopic age analyses of intercalat ed volcanic tuffs. Fischer assay analyses reveal distinctly different patterns of organic matter enrichment that correlate with different lacustrine facies associations. Histograms of oil generative potential for evaporative facies of the Wilkins Peak Member exhibit an approximately exponential distribution. This pattern is interpret ed to result from episodic expansion and contraction of Eocene Lake Gosiute across a low-gradient basin floor that experienced frequent desiccation. In contrast, histograms for fluctuating profundal facies of the upper Rife Bed of the Tipton Member and the lower LaClede Bed of the Laney Member exhibit an approximately normal or log normal distribution, with modes as high as 16–18 gallons per ton. This pattern is interpreted to reflect generally deeper conditions when the lake often intersected basin-bounding uplifts. Within the Bridger basin, burial of CORG was greatest in the south during initial Wilkins Peak Member deposition, reflecting greater rates of accommodation near the Uinta uplift. The locus of CORG burial shifted north during upper Wilkins Peak Member deposition, coincident with a decrease in differential accommodation. CORG burial during deposition of the upper Rife and lower LaClede Beds was greatest in the southeast, due either to greater accommodation or localized influx of river-borne nutrients. Average CORG burial fluxes are consistently ~4-5 g/m2 yr for each interval, which is an order of magnitude less than fluxes reported for small Holocene lakes in the northern hemisphere. Maximum rates of CORG burial during deposition of organic-rich mudstone beds (oil shale) were likely similar to Holocene lakes however. Deposition of carbonate minerals in the Bridger basin resulted in additional, inorganic carbon burial. Overall it appears that carbon burial by Eocene lakes could have influenced the global carbon cycle, but only if synchronized across multiple lake systems. 
    more » « less
  5. Mineralogy, petrographic textures, and sedimentary structures from the world’s largest trona deposit, the Wilkins Peak Member (WPM) of the early Eocene Green River Formation (GRF), Bridger subbasin, Wyoming, provide key data about depositional conditions and paleoenvironments. The 250 m-long WPM interval in the Solvay S-34-1 drill core analyzed in this study contains a detailed record of sedimentation in the Bridger subbasin at the deepest area of a hydrologically-closed basin during peak Cenozoic atmospheric CO2 concentrations. Large accumulations of trona (Na3(HCO3)(CO3)·2H2O), shortite (Na2Ca2(CO3)3), northupite (Na3Mg (CO3)2Cl), and halite (NaCl; now replaced by trona), occur in the lower half of the WPM. Modern saline lake environments such as Lake Magadi, Kenya, and the Dead Sea, Israel-Jordan, are useful analogues for interpreting paleolake conditions associated with evaporite deposition in the Solvay S-34-1 core. Solvay saline lake deposits are organized into meter-scale shallowing-upward successions, beginning with (1) oil shale overlain by (2) trona, in places interbedded with oil shale, followed by (3) peloidal dolomite grainstone and/or silty dolomitic mudstone, and (4) massive mudstone with disruption features or desiccation cracks, and/or siliciclastic sandstone with ripple cross-stratification. Based on observations of modern hypersaline lake environments, WPM evaporite deposition at the basin depocenter is interpreted to be controlled by inflow water composition and volume, evaporative concentration, and seasonally-driven lake temperature fluctuations, resulting in recurrent patterns in evaporite mineralogies and textures. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    ABSTRACT The Green River Formation preserves an extraordinary archive of terrestrial paleoclimate during the Early Eocene Climatic Optimum (EECO; ∼ 53–50 Ma), expressing multiple scales of sedimentary cyclicity previously interpreted to reflect annual to Milankovitch-scale forcing. Here we utilize X-ray fluorescence (XRF) core scanning and micro X-ray fluorescence (micro-XRF) scanning in combination with radioisotopic age data to evaluate a rock core record of laminated oil shale and carbonate mudstone from Utah's Uinta Basin, with the parallel objectives of elucidating the paleo-environmental significance of the sedimentary rhythms, testing a range of forcing hypotheses, and evaluating potential linkages between high- and low-frequency forcing. This new assessment reveals that the ∼ 100-μm-scale laminae—the most fundamental rhythm of the Green River Formation—are most strongly expressed by variations in abundance of iron and sulfur. We propose that these variations reflect changes in redox state, consistent with annual stratification of the lake. In contrast to previous studies, no support was found for ENSO or sunspot cycles. However, millimeter- to centimeter-scale rhythms—temporally constrained to the decadal to centennial scale—are strongly expressed as alternations in the abundance of silicate- versus carbonate-associated elements (e.g., Al and Si vs. Ca), suggesting changes in precipitation and sediment delivery to the paleo-lake. Variations also occur at the meter scale, defining an approximate 4 m cycle interpreted to reflect precession. We also identify punctuated intervals, associated principally with one phase of the proposed precession cycle, where Si disconnects from the silicate input. We propose an alternative authigenic or biogenic Si source for these intervals, which reflects periods of enhanced productivity. This result reveals how long-term astronomical forcings can influence short-term processes, yielding insight into decadal- to millennial-scale terrestrial climate change in the Eocene greenhouse earth. 
    more » « less
  8. The Green River Formation preserves an extraordinary archive of terrestrial paleoclimate during the Early Eocene Climate Optimum (EECO; ~53-50 Ma), expressing multiple scales of sedimentary cyclicity previously interpreted to reflect annual to Milankovitch-scale forcing. Here we utilize X-ray fluorescence (XRF) core scanning and micro X-ray fluorescence (micro-XRF) scanning in combination with radioisotopic age data to evaluate a rock core record of laminated oil shale and carbonate mudstone from Utah’s Uinta Basin, with the parallel objectives of elucidating the paleo-environmental significance of the sedimentary rhythms, testing a range of forcing hypotheses, and evaluating potential linkages between high- and low-frequency forcing. This new assessment reveals that the ~100 μm-scale laminae – the most fundamental rhythm of the Green River Formation –are most strongly expressed by variations in iron and sulfur abundance. We propose that these variations reflect changes in redox state, consistent with annual stratification of the lake. In contrast to previous studies, no support was found for ENSO or sunspot cycles. However, millimeter to centimeter-scale rhythms—temporally constrained to the decadal to centennial scale—are strongly expressed as alternations in the abundance of silicate- versus carbonate-associated elements (e.g., Al and Si vs. Ca), suggesting changes in precipitation and sediment delivery to the paleo-lake. Variations also occur at the meter-scale, defining a ~4 m cycle interpreted to reflect precession. We also identify punctuated intervals, primarily associated with one phase of the proposed precession cycle, where Si disconnects from the silicate input. We propose an alternate authigenic or biogenic Si source for these intervals, which reflects periods of enhanced productivity. This result reveals how long-term astronomical forcings can govern the response of the system to shorter-term processes, yielding insight into decadal to millennial scale terrestrial climate change in the Eocene greenhouse earth. 
    more » « less
  9. Trona, nahcolite, and other Na-carbonate evaporite minerals in lakes are often closely associated with active volcanism, suggesting that the excess alkalinity required for their formation may arise from fluid-rock interactions involving hydrothermal waters that contain magmatic CO2. Paradoxically, the world’s largest Na-carbonate occurrence, contained within the Eocene Green River Formation in Wyoming, was not associated with nearby active magmatism. Magmatism was active ~200 km southeast in the Colorado Mineral Belt however, suggesting that a river draining this area could have supplied excess alkalinity to Eocene lakes. Sedimentologic studies in southwestern Wyoming, along the course of the hypothesized Aspen paleoriver, document fluvial and deltaic sandstone with generally northwest-directed paleocurrent indicators. Sandstone framework grain compositions and detrital zircon ages are consistent with derivation from the Colorado Mineral Belt and its host rocks. These results provide the first confirmation of a fluvial connection to downstream Eocene lakes, and indicate that lake deposits may offer a unique perspective on upstream magmatic and hydrothermal histories. 
    more » « less