skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Poloidal‐ and Toroidal‐Mode Mantle Flows Underneath the Cascadia Subduction Zone
Abstract Several hypotheses have been proposed to explain intriguing circular shear wave splitting patterns in the Pacific Northwest, invoking either 2‐D entrained flows or 3‐D return flows. Here, we present some hitherto unidentified, depth‐dependent anisotropic signatures to reconcile different conceptual models. At depths shallower than 200 km, the fast propagation directions of seismic waves to the west of the Rocky Mountain are aligned sub‐parallel to the subduction direction of the Juan de Fuca and Gorda Plates. This pattern is consistent with previous onshore/offshore shear wave splitting measurements and indicates that 2‐D entrained flows dominate at shallower depths. From 300 to 500 km, two large‐scale return flows are revealed, one circulating around Nevada and Colorado and the other running around the edge of the descending Juan de Fuca slab. These observations suggest the development of toroidal‐mode mantle flows, driven by the fast rollback of the narrow, fragmented Juan de Fuca and Gorda slabs.  more » « less
Award ID(s):
1924282 2042098
PAR ID:
10386844
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
14
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We use surface wave measurements to reveal anisotropy as a function of depth within the Juan de Fuca and Gorda plate system. Using a two‐plane wave method, we measure phase velocity and azimuthal anisotropy of fundamental mode Rayleigh waves, solving for anisotropic shear velocity. These surface wave measurements are jointly inverted with constraints fromSKSsplitting studies using a Markov chain approach. We show that the two data sets are consistent and present inversions that offer new constraints on the vertical distribution of strain beneath the plates and the processes at spreading centers. Anisotropy of the Juan de Fuca plate interior is strongest (~2.4%) in the low‐velocity zone between ~40‐ to 90‐km depth, with ENE direction driven by relative shear between plate motion and mantle return flow from the Cascadia subduction zone. In disagreement withPnmeasurements, weak (~1.1%) lithospheric anisotropy in Juan de Fuca is highly oblique to the expected ridge‐perpendicular direction, perhaps connoting complex intralithospheric fabrics associated with melt or off‐axis downwelling. In the Gorda microplate, strong shallow anisotropy (~1.9%) is consistent withPninversions and aligned with spreading and may be enhanced by edge‐driven internal strain. Weak anisotropy with ambiguous orientation in the low‐velocity zone can be explained by Gorda's youth and modest motion relative to the Pacific. Deeper (≥90 km) fabric appears controlled by regional flow fields modulated by the Farallon slab edge: anisotropy is strong (~1.8%) beneath Gorda, but absent beneath the Juan de Fuca, which is in the strain shadow of the slab. 
    more » « less
  2. We estimate seismic azimuthal anisotropy for the Juan de Fuca ‐ Gorda plates from inversion of a new 10–80 s period Rayleigh wave dataset, resulting in a two‐layer model to 80 km depth. In the lithosphere, most anisotropy patterns reflect the kinematics of plate formation, as approximated from seafloor‐age‐based paleo‐spreading, except for regions close to propagator wakes and near plate boundaries. In the asthenosphere, the fast propagation orientations align with convective shear as inferred from the NUVEL1A plate motion model, which is indicative of a ∼3 Myr average, rather than with the more recent, ∼0.8 Myr, motions inferred from MORVEL. Regional anisotropy of this young plate system thus records convection like older plates such as the Pacific. On smaller scales, anisotropy imaging provides insights into dynamics of plate generation and can further elucidate plate reorganizations and changes in boundary loading. 
    more » « less
  3. Abstract Laboratory experiments and geodynamic simulations demonstrate that poloidal- and toroidal-mode mantle flows develop around subduction zones. Here, we use a new 3-D azimuthal anisotropy model constructed by full waveform inversion, to infer deep subduction-induced mantle flows underneath Middle America. At depths shallower than 150 km, poloidal-mode flow is perpendicular to the trajectory of the Middle American Trench. From 300 to 450 km depth, return flows surround the edges of the Rivera and Atlantic slabs, while escape flows are inferred through slab windows beneath Panama and central Mexico. Furthermore, at 700 km depth, the study region is dominated by the Farallon anomaly, with fast axes perpendicular to its strike, suggesting the development of lattice-preferred orientations by substantial stress. These observations provide depth-dependent seismic anisotropy for future mantle flow simulations, and call for further investigations about the deformation mechanisms and elasticity of minerals in the transition zone and uppermost lower mantle. 
    more » « less
  4. Interpretation of erupted products we observe on the seafloor requires that we understand the petrogenesis of melts in the oceanic crust and where crystallization initially takes place. Our work focuses on estimating depth of crystallization of the plagioclase megacrysts using CO2 and H2O concentrations from plagioclase ultraphyric basalts (PUBs). Samples were analyzed from the Lucky Strike segment on the Mid-Atlantic Ridge and from three locations on the Juan de Fuca Ridge (West Valley, Endeavor Segment, and Axial Segment). Melt inclusions were re-homogenized to remove the effects of post-entrapment crystallization. The CO2 in the vapor bubbles present in the melt inclusions were analyzed at Virginia Tech using Raman spectroscopy, and associated glassy melt inclusions were analyzed at WHOI using the ion microprobe for CO2 and H2O. Vapor-saturation pressures calculated from these volatiles stored in melt inclusions and vapor bubbles range from 359-3994 bars, corresponding to depths of 1.0-11.4 km below the sea floor. The proportion of CO2 partitioned in the bubbles range from 11-98%. In summary, about 14% of the melt inclusions from Lucky Strike record crystallization depths of 3-4 km, consistent with the depth of the seismically imaged melt lens, whereas ~55% of melt inclusions crystallized at depths >4 km with a maximum at 9.8 km. These data are similar to depths of formation determined through olivine-hosted melt inclusions from the same segment (Wanless et al., 2015), although a greater portion of plagioclase-hosted melt inclusions record crystallization below the melt lens. At the Juan de Fuca ridge, ~24% of the melt inclusions record crystallization depths of 2-3 km, consistent with a seismically imaged mid-crustal magma chamber at the Endeavor Segment, while an additional ~62% crystallize at depths >3 km with a maximum at 11.4 km. This suggests that while crystallization can be focused within the melt lenses and magma chambers at these ridge localities, a significant and greater proportion of the megacrysts were sampled from the lower crust or upper mantle. 
    more » « less
  5. Abstract Seismic wave amplitudes have tremendous sensitivity to subduction structure; however, they are affected by attenuation, scattering and focusing, and have therefore been sparsely used compared with traveltimes. We measure and model teleseismic body wave amplitudes recorded at a dense broadband array in the Washington Cascades. These data show anomalous amplitude variations with complex azimuthal dependence at frequencies as low as 0.05 Hz, accompanied by significant multipathing. We demonstrate using spectral‐element numerical simulations that focusing of the teleseismic wavefield by the Juan de Fuca slab is responsible for some of the amplitude anomalies. The focusing effects can contaminate the apparent differential attenuation measurements and produce at least 20% of the inferred attenuation signal. Our results indicate that the amplitudes are sensitive to the subducting slab geometry and subduction structure, and can be used to refine seismic images. Ubiquitous and consistent amplitude anomalies are observed along the arc, suggesting that the Juan de Fuca slab may be continuous from Canada to northern California. 
    more » « less