Abstract Let$$\lambda $$ denote the Liouville function. We show that the logarithmic mean of$$\lambda (\lfloor \alpha _1n\rfloor )\lambda (\lfloor \alpha _2n\rfloor )$$ is 0 whenever$$\alpha _1,\alpha _2$$ are positive reals with$$\alpha _1/\alpha _2$$ irrational. We also show that for$$k\geqslant 3$$ the logarithmic mean of$$\lambda (\lfloor \alpha _1n\rfloor )\cdots \lambda (\lfloor \alpha _kn\rfloor )$$ has some nontrivial amount of cancellation, under certain rational independence assumptions on the real numbers$$\alpha _i.$$ Our results for the Liouville function generalise to produce independence statements for general bounded real-valued multiplicative functions evaluated at Beatty sequences. These results answer the two-point case of a conjecture of Frantzikinakis (and provide some progress on the higher order cases), generalising a recent result of Crnčević–Hernández–Rizk–Sereesuchart–Tao. As an ingredient in our proofs, we establish bounds for the logarithmic correlations of the Liouville function along Bohr sets.
more »
« less
Evaporation-controlled dripping-onto-substrate (DoS) extensional rheology of viscoelastic polymer solutions
Abstract Extensional flow properties of polymer solutions in volatile solvents govern many industrially-relevant coating processes, but existing instrumentation lacks the environment necessary to control evaporation. To mitigate evaporation during dripping-onto-substrate (DoS) extensional rheology measurements, we developed a chamber to enclose the sample in an environment saturated with solvent vapor. We validated the evaporation-controlled DoS device by measuring a model high molecular weight polyethylene oxide (PEO) in various organic solvents both inside and outside of the chamber. Evaporation substantially increased the extensional relaxation time$$\lambda _{E}$$ for PEO in volatile solvents like dichloromethane and chloroform. PEO/chloroform solutions displayed an over 20-fold increase in$$\lambda _{E}$$ due to the formation of an evaporation-induced surface film; evaporation studies confirmed surface features and skin formation reminiscent of buckling instabilities commonly observed in drying polymer solutions. Finally, the relaxation times of semi-dilute PEO/chloroform solutions were measured with environmental control, where$$\lambda _{E}$$ scaled with concentration by the exponent$$m=0.62$$ . These measurements validate the evaporation-controlled DoS environment, and confirm that chloroform is a good solvent for PEO, with a Flory exponent of$$\nu =0.54$$ . Our results are the first to control evaporation during DoS extensional rheology, and provide guidelines establishing when environmental control is necessary to obtain accurate rheological parameters.
more »
« less
- Award ID(s):
- 1901635
- PAR ID:
- 10364064
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We obtain new optimal estimates for the$$L^{2}(M)\to L^{q}(M)$$ ,$$q\in (2,q_{c}]$$ ,$$q_{c}=2(n+1)/(n-1)$$ , operator norms of spectral projection operators associated with spectral windows$$[\lambda ,\lambda +\delta (\lambda )]$$ , with$$\delta (\lambda )=O((\log \lambda )^{-1})$$ on compact Riemannian manifolds$$(M,g)$$ of dimension$$n\ge 2$$ all of whose sectional curvatures are nonpositive or negative. We show that these two different types of estimates are saturated on flat manifolds or manifolds all of whose sectional curvatures are negative. This allows us to classify compact space forms in terms of the size of$$L^{q}$$ -norms of quasimodes for each Lebesgue exponent$$q\in (2,q_{c}]$$ , even though it is impossible to distinguish between ones of negative or zero curvature sectional curvature for any$$q>q_{c}$$ .more » « less
-
Abstract We introduce the immersion poset$$({\mathcal {P}}(n), \leqslant _I)$$ on partitions, defined by$$\lambda \leqslant _I \mu $$ if and only if$$s_\mu (x_1, \ldots , x_N) - s_\lambda (x_1, \ldots , x_N)$$ is monomial-positive. Relations in the immersion poset determine when irreducible polynomial representations of$$GL_N({\mathbb {C}})$$ form an immersion pair, as defined by Prasad and Raghunathan [7]. We develop injections$$\textsf{SSYT}(\lambda , \nu ) \hookrightarrow \textsf{SSYT}(\mu , \nu )$$ on semistandard Young tableaux given constraints on the shape of$$\lambda $$ , and present results on immersion relations among hook and two column partitions. The standard immersion poset$$({\mathcal {P}}(n), \leqslant _{std})$$ is a refinement of the immersion poset, defined by$$\lambda \leqslant _{std} \mu $$ if and only if$$\lambda \leqslant _D \mu $$ in dominance order and$$f^\lambda \leqslant f^\mu $$ , where$$f^\nu $$ is the number of standard Young tableaux of shape$$\nu $$ . We classify maximal elements of certain shapes in the standard immersion poset using the hook length formula. Finally, we prove Schur-positivity of power sum symmetric functions on conjectured lower intervals in the immersion poset, addressing questions posed by Sundaram [12].more » « less
-
Abstract The radiation of steady surface gravity waves by a uniform stream$$U_{0}$$ over locally confined (width$$L$$ ) smooth topography is analyzed based on potential flow theory. The linear solution to this classical problem is readily found by Fourier transforms, and the nonlinear response has been studied extensively by numerical methods. Here, an asymptotic analysis is made for subcritical flow$$D/\lambda > 1$$ in the low-Froude-number ($$F^{2} \equiv \lambda /L \ll 1$$ ) limit, where$$\lambda = U_{0}^{2} /g$$ is the lengthscale of radiating gravity waves and$$D$$ is the uniform water depth. In this regime, the downstream wave amplitude, although formally exponentially small with respect to$$F$$ , is determined by a fully nonlinear mechanism even for small topography amplitude. It is argued that this mechanism controls the wave response for a broad range of flow conditions, in contrast to linear theory which has very limited validity.more » « less
-
Abstract Let$$(h_I)$$ denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ , the set of dyadic intervals and$$h_I\otimes h_J$$ denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ,$$I,J\in \mathcal {D}$$ . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ of$$h_I\otimes h_J$$ ,$$I,J\in \mathcal {D}$$ . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ or the Hardy spaces$$H^p[0,1]$$ ,$$1\le p < \infty $$ . We say that$$D:X(Y)\rightarrow X(Y)$$ is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ , where$$d_{I,J}\in \mathbb {R}$$ , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ if$$|I|\le |J|$$ , and$$\mathcal {C} h_I\otimes h_J = 0$$ if$$|I| > |J|$$ , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ , there exist$$\lambda ,\mu \in \mathbb {R}$$ such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ i.e., for all$$\eta > 0$$ , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ . Additionally, if$$\mathcal {C}$$ is unbounded onX(Y), then$$\lambda = \mu $$ and then$${{\,\textrm{Id}\,}}$$ either factors throughDor$${{\,\textrm{Id}\,}}-D$$ .more » « less
An official website of the United States government
