skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multipliers on bi-parameter Haar system Hardy spaces
Abstract Let$$(h_I)$$ ( h I ) denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ I D , the set of dyadic intervals and$$h_I\otimes h_J$$ h I h J denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ( s , t ) h I ( s ) h J ( t ) ,$$I,J\in \mathcal {D}$$ I , J D . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ V ( δ 2 ) of$$h_I\otimes h_J$$ h I h J ,$$I,J\in \mathcal {D}$$ I , J D . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ L p [ 0 , 1 ] or the Hardy spaces$$H^p[0,1]$$ H p [ 0 , 1 ] ,$$1\le p < \infty $$ 1 p < . We say that$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ D ( h I h J ) = d I , J h I h J , where$$d_{I,J}\in \mathbb {R}$$ d I , J R , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ C : V ( δ 2 ) V ( δ 2 ) given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ C h I h J = h I h J if$$|I|\le |J|$$ | I | | J | , and$$\mathcal {C} h_I\otimes h_J = 0$$ C h I h J = 0 if$$|I| > |J|$$ | I | > | J | , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) , there exist$$\lambda ,\mu \in \mathbb {R}$$ λ , μ R such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ λ C + μ ( Id - C ) approximately 1-projectionally factors through D , i.e., for all$$\eta > 0$$ η > 0 , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ Id ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ A · B = 1 and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ λ C + μ ( Id - C ) - A D B < η . Additionally, if$$\mathcal {C}$$ C is unbounded onX(Y), then$$\lambda = \mu $$ λ = μ and then$${{\,\textrm{Id}\,}}$$ Id either factors throughDor$${{\,\textrm{Id}\,}}-D$$ Id - D more » « less
Award ID(s):
2349322
PAR ID:
10509669
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Mathematische Annalen
Volume:
390
Issue:
4
ISSN:
0025-5831
Format(s):
Medium: X Size: p. 5669-5752
Size(s):
p. 5669-5752
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The total charm-quark production cross section per unit of rapidity$$\textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y$$ d σ ( c c ¯ ) / d y , and the fragmentation fractions of charm quarks to different charm-hadron species$$f(\textrm{c}\rightarrow {\textrm{h}}_{\textrm{c}})$$ f ( c h c ) , are measured for the first time in p–Pb collisions at$$\sqrt{s_\textrm{NN}} = 5.02~\text {Te}\hspace{-1.00006pt}\textrm{V} $$ s NN = 5.02 Te V at midrapidity ($$-0.96<0.04$$ - 0.96 < y < 0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species:$$\textrm{D}^{0}$$ D 0 ,$$\textrm{D}^{+}$$ D + ,$$\textrm{D}_\textrm{s}^{+}$$ D s + , and$$\mathrm {J/\psi }$$ J / ψ mesons, and$$\Lambda _\textrm{c}^{+}$$ Λ c + and$$\Xi _\textrm{c}^{0}$$ Ξ c 0 baryons. The resulting cross section is$$ \textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y =219.6 \pm 6.3\;(\mathrm {stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm {syst.}) {\;}_{-2.9}^{+8.3}\;(\mathrm {extr.})\pm 5.4\;(\textrm{BR})\pm 4.6\;(\mathrm {lumi.}) \pm 19.5\;(\text {rapidity shape})+15.0\;(\Omega _\textrm{c}^{0})\;\textrm{mb} $$ d σ ( c c ¯ ) / d y = 219.6 ± 6.3 ( stat . ) - 11.8 + 10.5 ( syst . ) - 2.9 + 8.3 ( extr . ) ± 5.4 ( BR ) ± 4.6 ( lumi . ) ± 19.5 ( rapidity shape ) + 15.0 ( Ω c 0 ) mb , which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at$$\sqrt{s} = 5.02$$ s = 5.02 and 13 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with$$\mathrm {e^{+}e^{-}}$$ e + e - and$$\mathrm {e^{-}p}$$ e - p collisions. The$$p_\textrm{T}$$ p T -integrated nuclear modification factor of charm quarks,$$R_\textrm{pPb}({\textrm{c}}\overline{\textrm{c}})= 0.91 \pm 0.04\;\mathrm{(stat.)} ^{+0.08}_{-0.09}\;\mathrm{(syst.)} ^{+0.05}_{-0.03}\;\mathrm{(extr.)} \pm 0.03\;\mathrm{(lumi.)}$$ R pPb ( c c ¯ ) = 0.91 ± 0.04 ( stat . ) - 0.09 + 0.08 ( syst . ) - 0.03 + 0.05 ( extr . ) ± 0.03 ( lumi . ) , is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions. 
    more » « less
  2. Abstract The elliptic flow$$(v_2)$$ ( v 2 ) of$${\textrm{D}}^{0}$$ D 0 mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$ D 0 ) was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$ s NN = 5.02  TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$ D 0 mesons were reconstructed at midrapidity$$(|y|<0.8)$$ ( | y | < 0.8 ) from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ D 0 K - π + , in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$ 2 < p T < 12  GeV/c. The result indicates a positive$$v_2$$ v 2 for non-prompt$${{\textrm{D}}^{0}}$$ D 0 mesons with a significance of 2.7$$\sigma $$ σ . The non-prompt$${{\textrm{D}}^{0}}$$ D 0 -meson$$v_2$$ v 2 is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$ σ significance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ 2 < p T < 8 GeV / c , and compatible with the$$v_2$$ v 2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties. 
    more » « less
  3. Abstract A search for exotic decays of the Higgs boson ($$\text {H}$$ H ) with a mass of 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V to a pair of light pseudoscalars$$\text {a}_{1} $$ a 1 is performed in final states where one pseudoscalar decays to two$${\textrm{b}}$$ b quarks and the other to a pair of muons or$$\tau $$ τ leptons. A data sample of proton–proton collisions at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$ fb - 1 recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level ($$\text {CL}$$ CL ) on the Higgs boson branching fraction to$$\upmu \upmu \text{ b } \text{ b } $$ μ μ b b and to$$\uptau \uptau \text{ b } \text{ b },$$ τ τ b b , via a pair of$$\text {a}_{1} $$ a 1 s. The limits depend on the pseudoscalar mass$$m_{\text {a}_{1}}$$ m a 1 and are observed to be in the range (0.17–3.3) $$\times 10^{-4}$$ × 10 - 4 and (1.7–7.7) $$\times 10^{-2}$$ × 10 - 2 in the$$\upmu \upmu \text{ b } \text{ b } $$ μ μ b b and$$\uptau \uptau \text{ b } \text{ b } $$ τ τ b b final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine upper limits on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} \rightarrow \ell \ell \text{ b } \text{ b})$$ B ( H a 1 a 1 b b ) at 95%$$\text {CL}$$ CL , with$$\ell $$ being a muon or a$$\uptau $$ τ lepton. For different types of 2HDM+S, upper bounds on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$ B ( H a 1 a 1 ) are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space,$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$ B ( H a 1 a 1 ) values above 0.23 are excluded at 95%$$\text {CL}$$ CL for$$m_{\text {a}_{1}}$$ m a 1 values between 15 and 60$$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V
    more » « less
  4. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less
  5. Abstract For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$ X = C 1 × C 2 of two curves over$$\mathbb {Q} $$ Q with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ J 1 ( Q ) J 2 ( Q ) ε CH 0 ( C 1 × C 2 ) is finite, where$$J_i$$ J i is the Jacobian variety of$$C_i$$ C i . Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$ E 1 , E 2 with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d for which the analogous map$$\varepsilon $$ ε has finite image. 
    more » « less