Abstract The export of Antarctic Bottom Water (AABW) supplies the bottom cell of the global overturning circulation and plays a key role in regulating climate. This AABW outflow must cross, and is therefore mediated by, the Antarctic Circumpolar Current (ACC). Previous studies present widely varying conceptions of the role of the ACC in directing AABW across the Southern Ocean, suggesting either that AABW may be zonally recirculated by the ACC, or that AABW may flow northward within deep western boundary currents (DWBC) against bathymetry. In this study the authors investigate how the forcing and geometry of the ACC influences the transport and transformation of AABW using a suite of process-oriented model simulations. The model exhibits a strong dependence on the elevation of bathymetry relative to AABW layer thickness: higher meridional ridges suppress zonal AABW exchange, increase the strength of flow in the DWBC, and reduce the meridional variation in AABW density across the ACC. Furthermore, the transport and transformation vary with density within the AABW layer, with denser varieties of AABW being less efficiently transported between basins. These findings indicate that changes in the thickness of the AABW layer, for example, due to changes in Antarctic shelf processes, and tectonic changes in the sea floor shape may alter the pathways and transformation of AABW across the ACC. Significance StatementThe ocean plays an outsized role in the movement of heat and trace gases around Earth, and the northward export of dense Antarctic Bottom Water is a crucial component of this climate-regulating process. This study aims to understand what sets the pathways of Antarctic Bottom Water as it travels northward across the Antarctic Circumpolar Current, and thus what controls its partitioning between the Atlantic, Indian, and Pacific basins. Our results highlight the importance of seafloor elevation relative to the thickness of the Antarctic Bottom Water layer for directing the flow northward versus between basins. This study motivates future investigation of long-term changes in Antarctic Bottom Water properties and their consequences for its global distribution.
more »
« less
Bathymetric Control of Subpolar Gyres and the Overturning Circulation in the Southern Ocean
Abstract The subpolar gyres of the Southern Ocean form an important dynamical link between the Antarctic Circumpolar Current (ACC) and the coastline of Antarctica. Despite their key involvement in the production and export of bottom water and the poleward transport of oceanic heat, these gyres are rarely acknowledged in conceptual models of the Southern Ocean circulation, which tend to focus on the zonally averaged overturning across the ACC. To isolate the effect of these gyres on the regional circulation, we carried out a set of numerical simulations with idealized representations of the Weddell Sea sector in the Southern Ocean. A key result is that the zonally oriented submarine ridge along the northern periphery of the subpolar gyre plays a fundamental role in setting the stratification and circulation across the entire region. In addition to sharpening and strengthening the horizontal circulation of the gyre, the zonal ridge establishes a strong meridional density front that separates the weakly stratified subpolar gyre from the more stratified circumpolar flow. Critically, the formation of this front shifts the latitudinal outcrop position of certain deep isopycnals such that they experience different buoyancy forcing at the surface. Additionally, the zonal ridge modifies the mechanisms by which heat is transported poleward by the ocean, favoring heat transport by transient eddies while suppressing that by stationary eddies. This study highlights the need to characterize how bathymetry at the subpolar gyre–ACC boundary may constrain the transient response of the regional circulation to changes in surface forcing. Significance StatementThis study explores the impact of seafloor bathymetry on the dynamics of subpolar gyres in the Southern Ocean. The subpolar gyres are major circulation features that connect the Antarctic Circumpolar Current (ACC) and the coastline of Antarctica. This work provides deeper insight for how the submarine ridges that exist along the northern periphery of these gyres shape the vertical distribution of tracers and overturning circulation in these regions. These findings highlight an underappreciated yet fundamentally important topographical constraint on the three-dimensional cycling of heat and carbon in the Southern Ocean—processes that have far-reaching implications for the global climate. Future work should explore how the presence of these ridges affect the time-evolving response of the Southern Ocean to changes in surface conditions.
more »
« less
- PAR ID:
- 10364072
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 52
- Issue:
- 2
- ISSN:
- 0022-3670
- Format(s):
- Medium: X Size: p. 205-223
- Size(s):
- p. 205-223
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wind-driven and thermohaline circulations, two major components of global large-scale ocean circulations, are intrinsically related. As part of the thermohaline circulation, the Atlantic Meridional Overturning Circulation has been observed and is expected to decline over the twenty-first century, potentially modulating global wind-driven circulation. Here we perform coupled climate model experiments with either a slow or steady Atlantic overturning under anthropogenic warming to segregate its effect on wind-driven circulation. We find that the weakened Atlantic overturning generates anticyclonic surface wind anomalies over the subpolar North Atlantic to decelerate the gyre circulation there. Fingerprints of overturning slowdown are evident on Atlantic western boundary currents, encompassing a weaker northward Gulf Stream and Guiana Current and a stronger southward Brazil Current. Beyond the Atlantic, the weakened Atlantic overturning causes a poleward displacement of Southern Hemisphere surface westerly winds by changing meridional gradients of atmospheric temperature, leading to poleward shifts of the Antarctic Circumpolar Current and Southern Ocean meridional overturning circulations.more » « less
-
We investigate the role of Southern Ocean topography and wind stress in the deep and abyssal ocean overturning and water mass composition using a suite of idealized global ocean circulation models. Specifically, we address how the presence of a meridional ridge in the vicinity of Drake Passage and the formation of an associated Southern Ocean gyre influence the water mass composition of the abyssal cell. Our experiments are carried out using a numerical representation of the global ocean circulation in an idealized two-basin geometry under varying wind stress and Drake Passage ridge height. In the presence of a low Drake Passage ridge, the overall strength of the meridional overturning circulation is primarily influenced by wind stress, with a topographically induced weakening of the middepth cell and concurrent strengthening of the abyssal cell occurring only after ridge height passes 2500 m. Passive tracer experiments show that a strengthening middepth cell leads to increased abyssal ventilation by North Atlantic water masses, as more North Atlantic Deep Water (NADW) enters the Southern Ocean and then spreads into the Indo-Pacific. We repeat our tracer experiments without restoring in the high-latitude Southern Ocean in order to identify the origin of water masses that circulate through the Southern Ocean before sinking into the abyss as Antarctic Bottom Water. Our results from these “exchange” tracer experiments show that an increasing ridge height in Drake Passage and the concurrent gyre spinup lead to substantially decreased NADW-origin waters in the abyssal ocean, as more surface waters from north of the Antarctic Circumpolar Current (ACC) are transferred into the Antarctic Bottom Water formation region. Significance StatementThe objective of this study is to investigate how topographic features in the Southern Ocean can affect the overall structure of Earth’s large-scale ocean circulation and the distribution of water masses in the abyssal ocean. We focus on the Southern Ocean because the region is of central importance for exchange between the Atlantic and Indo-Pacific Ocean basins and for CO2and heat uptake into the abyssal ocean. Our results indicate that Southern Ocean topography plays a major role in the overall circulation by 1) controlling the direct transfer of abyssal waters from the Atlantic to the Indo-Pacific via its influence on the Atlantic meridional overturning circulation and 2) controlling the coupling between the abyssal ocean and surface waters north of the Antarctic Circumpolar Current via the Southern Ocean gyre.more » « less
-
null (Ed.)Abstract Eddy heat flux plays a fundamental role in the Southern Ocean meridional overturning circulation, providing the only mechanism for poleward heat transport above the topography and below the Ekman layer at the latitudes of Drake Passage. Models and observations identify Drake Passage as one of a handful of hot spots in the Southern Ocean where eddy heat transport across the Antarctic Circumpolar Current (ACC) is enhanced. Quantifying this transport, however, together with its spatial distribution and temporal variability, remains an open question. This study quantifies eddy heat flux as a function of ACC streamlines using a unique 20-yr time series of upper-ocean temperature and velocity transects with unprecedented horizontal resolution. Eddy heat flux is calculated using both time-mean and time-varying streamlines to isolate the dynamically important across-ACC heat flux component. The time-varying streamlines provide the best estimate of the across-ACC component because they track the shifting and meandering of the ACC fronts. The depth-integrated (0–900 m) across-stream eddy heat flux is maximum poleward in the south flank of the Subantarctic Front (−0.10 ± 0.05 GW m −1 ) and decreases toward the south, becoming statistically insignificant in the Polar Front, indicating heat convergence south of the Subantarctic Front. The time series provides an uncommon opportunity to explore the seasonal cycle of eddy heat flux. Poleward eddy heat flux in the Polar Front Zone is enhanced during austral autumn–winter, suggesting a seasonal variation in eddy-driven upwelling and thus the meridional overturning circulation.more » « less
-
Abstract Cross-frontal exchange facilitated by mesoscale eddies in the lee of major topographic features of the Southern Ocean is fundamental to the global overturning circulation. Despite the outsize importance for meridional heat flux, we lack an accurate estimation of fluxes across the Antarctic Circumpolar Current (ACC) due to the challenges of observing mesoscale eddy fluctuations on the temporal and spatial scales required. Here, 12 years of Argo data are used to observe patterns of cross-frontal exchange in the Southeast Indian Ridge system, a relatively underobserved region, known to be a hotspot of exchange. Spice variance along ACC streamlines is used as a proxy for cross-frontal exchange. Elevated exchange is observed downstream of the ridge system in nearly every streamline and is particularly prominent in the core of the ACC. Notably, exchange peaks progressively downstream at each poleward streamline suggesting a systematic north-to-south handoff across nearly the full breadth of the ACC. Employing a mixing length framework, lateral stirring is parameterized as an eddy diffusivity on the isopycnal of peak exchange. We find a highly localized pattern of diffusivity, peaking between the crest and trough of the first standing meander in the lee of the ridge system. Spatially, this diffusivity pattern correlates with an along-stream increase in eddy kinetic energy. Along-stream vertical wavenumber spectra of spice anomaly profiles indicate that the vertical scales of intrusions, which are initially large (approximately 800 m), rapidly evolve downstream to smaller wavenumbers (100–300 m) presumably in response to intense vertical shear and filamentation.more » « less
An official website of the United States government
