skip to main content


Title: Analytical gradients for nuclear–electronic orbital multistate density functional theory: Geometry optimizations and reaction paths

Hydrogen tunneling plays a critical role in many biologically and chemically important processes. The nuclear–electronic orbital multistate density functional theory (NEO-MSDFT) method was developed to describe hydrogen transfer systems. In this approach, the transferring proton is treated quantum mechanically on the same level as the electrons within multicomponent DFT, and a nonorthogonal configuration interaction scheme is used to produce delocalized vibronic states from localized vibronic states. The NEO-MSDFT method has been shown to provide accurate hydrogen tunneling splittings for fixed molecular systems. Herein, the NEO-MSDFT analytical gradients for both ground and excited vibronic states are derived and implemented. The analytical gradients and semi-numerical Hessians are used to optimize and characterize equilibrium and transition state geometries and to generate minimum energy paths (MEPs), for proton transfer in the deprotonated acetylene dimer and malonaldehyde. The barriers along the resulting MEPs are lower when the transferring proton is quantized because the NEO-MSDFT method inherently includes the zero-point energy of the transferring proton. Analysis of the proton densities along the MEPs illustrates that the proton density can exhibit symmetric or asymmetric bilobal character associated with symmetric or slightly asymmetric double-well potential energy surfaces and hydrogen tunneling. Analysis of the contributions to the intrinsic reaction coordinate reveals that changes in the C–O bond lengths drive proton transfer in malonaldehyde. This work provides the foundation for future reaction path studies and direct nonadiabatic dynamics simulations of a wide range of hydrogen transfer reactions.

 
more » « less
Award ID(s):
1954348
NSF-PAR ID:
10364106
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
156
Issue:
11
ISSN:
0021-9606
Page Range / eLocation ID:
Article No. 114115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Within the nuclear-electronic orbital (NEO) framework, the real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) approach enables the simulation of coupled electronic-nuclear dynamics. In this approach, the electrons and quantum nuclei are propagated in time on the same footing. A relatively small time step is required to propagate the much faster electronic dynamics, thereby prohibiting the simulation of long-time nuclear quantum dynamics. Herein, the electronic Born–Oppenheimer (BO) approximation within the NEO framework is presented. In this approach, the electronic density is quenched to the ground state at each time step, and the real-time nuclear quantum dynamics is propagated on an instantaneous electronic ground state defined by both the classical nuclear geometry and the nonequilibrium quantum nuclear density. Because the electronic dynamics is no longer propagated, this approximation enables the use of an order-of-magnitude larger time step, thus greatly reducing the computational cost. Moreover, invoking the electronic BO approximation also fixes the unphysical asymmetric Rabi splitting observed in previous semiclassical RT-NEO-TDDFT simulations of vibrational polaritons even for small Rabi splitting, instead yielding a stable, symmetric Rabi splitting. For the intramolecular proton transfer in malonaldehyde, both RT-NEO-Ehrenfest dynamics and its BO counterpart can describe proton delocalization during the real-time nuclear quantum dynamics. Thus, the BO RT-NEO approach provides the foundation for a wide range of chemical and biological applications.

     
    more » « less
  2. null (Ed.)
    Hydrogen bonding plays a critical role in maintaining order and structure in complex biological and synthetic systems. N -heterocyclic carbenes (NHCs) represent one of the most versatile tools in the synthetic chemistry toolbox, yet their potential as neutral carbon hydrogen bond acceptors remains underexplored. This report investigates this capability in a strategic manner, wherein carbene-based hydrogen bonding can be assessed by use of ditopic NH -containing molecules. N–H bonds are unique as there are three established reaction modes with carbenes: non-traditional hydrogen bonding adducts (X–H⋯:C), salts arising from proton transfer ([H–C] + [X] − ), or amines from insertion of the carbene into the N–H bond. Yet, there are no established rules to predict product distributions or the strength of these associations. Here we seek to correlate the hydrogen bond strength of symmetric and asymmetric ditopic secondary amines with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene ( IPr , a representative NHC). In symmetric and asymmetric ditopic amine adducts both the solid-state (hydrogen bond lengths, NHC interior angles) and solution-state ( 1 H Δ δ of NH signals, 13 C signals of carbenic carbon) can be related to the p K a of the parent amine. 
    more » « less
  3. ABSTRACT: We report the generation and spectroscopic study of hydrogen-rich DNA tetranucleotide cation radicals (GATC+2H)+• and (AGTC+2H)+•. The radicals were generated in the gas phase by one-electron reduction of the respective dications (GATC +2H)2+ and (AGTC+2H)2+ and characterized by collision-induced dissociation and photodissociation tandem mass spectrometry and UV−vis photodissociation action spectroscopy. Among several absorption bands observed for (GATC+2H)+•, the bands at 340 and 450 nm were assigned to radical chromophores. Timedependent density functional theory calculations including vibronic transitions in the visible region of the spectrum were used to provide theoretical absorption spectra of several low-energy tetranucleotide tautomers having cytosine-, adenine-, and thymine- based radical chromophores that did not match the experimental spectrum. Instead, the calculations indicated the formation of a new isomer with the 7,8-H-dihydroguanine cation radical moiety. The isomerization involved hydrogen migration from the cytosine N-3−H radical to the C-8 position in N-7-protonated guanine that was calculated to be 87 kJ mol−1 exothermic and had a low-energy transition state. Although the hydrogen migration was facilitated by the spatial proximity of the guanine and cytosine bases in the low-energy (GATC+2H)+• intermediate formed by electron transfer, the reaction was calculated to have a large negative activation entropy. Rice−Ramsperger−Kassel−Marcus (RRKM) and transition state theory kinetic analysis indicated that the isomerization occurred rapidly in hot cation radicals produced by electron transfer with the population-weighed rate constant of k = 8.9 × 103 s−1. The isomerization was calculated to be too slow to proceed on the experimental time scale in thermal cation radicals at 310 K. 
    more » « less
  4. null (Ed.)
    We investigated the collision-induced dissociation (CID) reactions of a protonated Hoogsteen 9-methylguanine–1-methylcytosine base pair (HG-[9MG·1MC + H] + ), which aims to address the mystery of the literature reported “anomaly” in product ion distributions and compare the kinetics of a Hoogsteen base pair with its Watson-Crick isomer WC-[9MG·1MC + H] + (reported recently by Sun et al. ; Phys. Chem. Chem. Phys. , 2020, 22 , 24986). Product ion cross sections and branching ratios were measured as a function of center-of-mass collision energy using guided-ion beam tandem mass spectrometry, from which base-pair dissociation energies were determined. Product structures and energetics were assessed using various theories, of which the composite DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-311++G(d,p) was adopted as the best-performing method for constructing a reaction potential energy surface. The statistical Rice–Ramsperger–Kassel–Marcus theory was found to provide a useful framework for rationalizing the dominating abundance of [1MC + H] + over [9MG + H] + in the fragment ions of HG-[9MG·1MC + H] + . The kinetics analysis proved the necessity for incorporating into kinetics modeling not only the static properties of reaction minima and transition states but more importantly, the kinetics of individual base-pair conformers that have formed in collisional activation. The analysis also pinpointed the origin of the statistical kinetics of HG-[9MG·1MC + H] + vs. the non-statistical behavior of WC-[9MG·1MC + H] + in terms of their distinctively different intra-base-pair hydrogen-bonds and consequently the absence of proton transfer between the N1 position of 9MG and the N3′ of 1MC in the Hoogsteen base pair. Finally, the Hoogsteen base pair was examined in the presence of a water ligand, i.e. , HG-[9MG·1MC + H] + ·H 2 O. Besides the same type of base-pair dissociation as detected in dry HG-[9MG·1MC + H] + , secondary methanol elimination was observed via the S N 2 reaction of water with nucleobase methyl groups. 
    more » « less
  5. It has been shown previously in protonated, deprotonated and ionized guanine–cytosine base pairs that intra-base pair proton transfer from the N1–H at the Watson–Crick edge of guanine to the complementary nucleobase prompts non-statistical dissociation of the base-pair system, and the dissociation of a proton-transferred base-pair structure is kinetically more favored than that of the starting, conventional base-pair structure. However, the fundamental chemistry underlying this anomalous and intriguing kinetics has not been completely revealed, which warrants the examination of more base-pair systems in different structural contexts in order to derive a generalized base-pair structure–kinetics correlation. The purpose of the present work is to expand the investigation to the non-canonical homodimeric and heterodimeric radical cations of 9-methylguanine (9MG) and 9-methyl-8-oxoguanine (9MOG), i.e. , [9MG·9MG]˙ + , [9MOG·9MG]˙ + and [9MOG·9MOG]˙ + . Experimentally, collision-induced dissociation tandem mass spectrometry coupled with an electrospray ionization (ESI) source was used for the formation of base-pair radical cations, followed by detection of dissociation product ions and cross sections in the collisions with Xe gas under single ion–molecule collision conditions and as a function of the center-of-mass collision energy. Computationally, density functional theory and coupled cluster theory were used to calculate and identify probable base-pair structures and intra-base pair proton transfer and hydrogen transfer reactions, followed by kinetics modeling to explore the properties of dissociation transition states and kinetic factors. The significance of this work is twofold: it provides insight into base-pair opening kinetics in three biologically-important, non-canonical systems upon oxidative and ionization damage; and it links non-statistical dissociation to intra-base pair proton-transfer originating from the N1–H at the Watson–Crick edge of 8-oxoguanine, enhancing understanding towards the base-pair fragmentation assisted by proton transfer. 
    more » « less