skip to main content


Title: Reconstructing the neutrino energy for in-ice radio detectors: A study for the Radio Neutrino Observatory Greenland (RNO-G)
Abstract

Since summer 2021, the Radio Neutrino Observatory in Greenland (RNO-G) is searching for astrophysical neutrinos at energies$${>10}$$>10 PeV by detecting the radio emission from particle showers in the ice around Summit Station, Greenland. We present an extensive simulation study that shows how RNO-G will be able to measure the energy of such particle cascades, which will in turn be used to estimate the energy of the incoming neutrino that caused them. The location of the neutrino interaction is determined using the differences in arrival times between channels and the electric field of the radio signal is reconstructed using a novel approach based on Information Field Theory. Based on these properties, the shower energy can be estimated. We show that this method can achieve an uncertainty of 13% on the logarithm of the shower energy after modest quality cuts and estimate how this can constrain the energy of the neutrino. The method presented in this paper is applicable to all similar radio neutrino detectors, such as the proposed radio array of IceCube-Gen2.

 
more » « less
Award ID(s):
2019597 2111232 2111410
NSF-PAR ID:
10364186
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal C
Volume:
82
Issue:
2
ISSN:
1434-6044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We have observed a significant enhancement in the energy deposition by 25–$$100~\textrm{GeV}$$100GeVphotons in a$$1~\textrm{cm}$$1cmthick tungsten crystal oriented along its$$\langle 111 \rangle $$111lattice axes. At$$100~\textrm{GeV}$$100GeV, this enhancement, with respect to the value observed without axial alignment, is more than twofold. This effect, together with the measured huge increase in secondary particle generation is ascribed to the acceleration of the electromagnetic shower development by the strong axial electric field. The experimental results have been critically compared with a newly developed Monte Carlo adapted for use with crystals of multi-$$X_0$$X0thickness. The results presented in this paper may prove to be of significant interest for the development of high-performance photon absorbers and highly compact electromagnetic calorimeters and beam dumps for use at the energy and intensity frontiers.

     
    more » « less
  2. Abstract

    A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrumf0(,p)with the Green’s functionG(r,p;p), which describes the monoenergetic spectrum solution in whichf0δ(pp)asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution forG(r,p;p). In this paper, we explore for the first time, solutions for more general and realistic forms forf0(,p). The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering timeτ(r,p)=τ0(p/p0)αin the shear flow region 0 <r<r2, andτ(r,p)=τ0(p/p0)α(r/r2)s, wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distributionψp(r,p;p)that particles observed at (r,p) originated fromr→ ∞ with momentump. The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described.

     
    more » « less
  3. Abstract

    A long-standing problem in mathematical physics is the rigorous derivation of the incompressible Euler equation from Newtonian mechanics. Recently, Han-Kwan and Iacobelli (Proc Am Math Soc 149:3045–3061, 2021) showed that in the monokinetic regime, one can directly obtain the Euler equation from a system ofNparticles interacting in$${\mathbb {T}}^d$$Td,$$d\ge 2$$d2, via Newton’s second law through asupercritical mean-field limit. Namely, the coupling constant$$\lambda $$λin front of the pair potential, which is Coulombic, scales like$$N^{-\theta }$$N-θfor some$$\theta \in (0,1)$$θ(0,1), in contrast to the usual mean-field scaling$$\lambda \sim N^{-1}$$λN-1. Assuming$$\theta \in (1-\frac{2}{d(d+1)},1)$$θ(1-2d(d+1),1), they showed that the empirical measure of the system is effectively described by the solution to the Euler equation as$$N\rightarrow \infty $$N. Han-Kwan and Iacobelli asked if their range for$$\theta $$θwas optimal. We answer this question in the negative by showing the validity of the incompressible Euler equation in the limit$$N\rightarrow \infty $$Nfor$$\theta \in (1-\frac{2}{d},1)$$θ(1-2d,1). Our proof is based on Serfaty’s modulated-energy method, but compared to that of Han-Kwan and Iacobelli, crucially uses an improved “renormalized commutator” estimate to obtain the larger range for$$\theta $$θ. Additionally, we show that for$$\theta \le 1-\frac{2}{d}$$θ1-2d, one cannot, in general, expect convergence in the modulated energy notion of distance.

     
    more » « less
  4. Abstract

    The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of$$\pm \, 1000$$±1000 s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors ($$\nu _e, \nu _\mu , \nu _\tau $$νe,νμ,ντ) at the level$$10^9{-}10^{15}~\textrm{cm}^{-2}\,\textrm{GW}^{-1}$$109-1015cm-2GW-1have been obtained in the 0.5–5 MeV neutrino energy range.

     
    more » « less
  5. Abstract

    Fast radio bursts (FRBs) are brief, energetic, typically extragalactic flashes of radio emission whose progenitors are largely unknown. Although studying the FRB population is essential for understanding how these astrophysical phenomena occur, such studies have been difficult to conduct without large numbers of FRBs and characterizable observational biases. Using the recently released catalog of 536 FRBs published by the Canadian Hydrogen Intensity Mapping Experiment/Fast Radio Burst (CHIME/FRB) collaboration, we present a study of the FRB population that also calibrates for selection effects. Assuming a Schechter function, we infer a characteristic energy cut-off ofEchar=2.381.64+5.35×1041erg and a differential power-law index ofγ=1.30.4+0.7. Simultaneously, we infer a volumetric rate of [7.33.8+8.8(stat.)1.8+2.0(sys.)]×104Gpc−3yr−1above a pivot energy of 1039erg and below a scattering timescale of 10 ms at 600 MHz, and find we cannot significantly constrain the cosmic evolution of the FRB population with star-formation rate. Modeling the host’s dispersion measure (DM) contribution as a log-normal distribution and assuming a total Galactic contribution of 80 pc cm−3, we find a median value ofDMhost=8449+69pc cm−3, comparable with values typically used in the literature. Proposed models for FRB progenitors should be consistent with the energetics and abundances of the full FRB population predicted by our results. Finally, we infer the redshift distribution of FRBs detected with CHIME, which will be tested with the localizations and redshifts enabled by the upcoming CHIME/FRB Outriggers project.

     
    more » « less