skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Warming Pattern Formation: The Role of Ocean Heat Uptake
Abstract This study investigates the formation mechanism of the ocean surface warming pattern in response to a doubling CO2with a focus on the role of ocean heat uptake (or ocean surface heat flux change, ΔQnet). We demonstrate that thetransientpatterns of surface warming and rainfall change simulated by the dynamic ocean–atmosphere coupled model (DOM) can be reproduced by theequilibriumsolutions of the slab ocean–atmosphere coupled model (SOM) simulations when forced with the DOM ΔQnetdistribution. The SOM is then used as a diagnostic inverse modeling tool to decompose the CO2-induced thermodynamic warming effect and the ΔQnet(ocean heat uptake)–induced cooling effect. As ΔQnetis largely positive (i.e., downward into the ocean) in the subpolar oceans and weakly negative at the equator, its cooling effect is strongly polar amplified and opposes the CO2warming, reducing the net warming response especially over Antarctica. For the same reason, the ΔQnet-induced cooling effect contributes significantly to the equatorially enhanced warming in all three ocean basins, while the CO2warming effect plays a role in the equatorial warming of the eastern Pacific. The spatially varying component of ΔQnet, although globally averaged to zero, can effectively rectify and lead to decreased global mean surface temperature of a comparable magnitude as the global mean ΔQneteffect under transient climate change. Our study highlights the importance of air–sea interaction in the surface warming pattern formation and the key role of ocean heat uptake pattern.  more » « less
Award ID(s):
2105654 1934392
PAR ID:
10364239
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
6
ISSN:
0894-8755
Page Range / eLocation ID:
p. 1885-1899
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Deep convection associated with large-scale tropical atmospheric circulations governs tropical precipitation. Under anthropogenic warming, the weakened Walker and Hadley circulations alter tropical rainfall. Ocean circulations are also expected to change due to global warming, impacting tropical atmospheric circulation systems. From the perspective of ocean heat uptake, we investigate how ocean circulation change modulates tropical atmospheric circulation and vertical motion under CO2warming by comparing fully coupled and slab-ocean simulations. We find that the slowed South Equatorial Current and subtropical cells in the Pacific induce anomalous advective warming, reducing ocean heat uptake in the central-western tropical Pacific. This, combined with increased downward radiation at the top of atmosphere and horizontal moisture advection, escalates the moisture static energy in the air column and promotes ascent in this region, shifting the Pacific Walker circulation eastward and strengthening the Pacific Hadley circulation. Across the tropical Indian Ocean, ocean heat uptake shows a dipole-like change, increasing in the eastern Indian Ocean and seas surrounding marine continents while decreasing in the western Indian Ocean. The former ocean heat uptake increase is triggered by anomalous oceanic vertical advective cooling, which abates the moisture static energy in the air column and inhibits the ascent in the area. The latter ocean heat uptake decrease is prompted by anomalous oceanic advective warming from both horizontal and vertical directions, which enhances the moisture static energy in the air column, resulting in anomalous upward motions. Over most of the tropics, ocean dynamics help attenuate the strengthening of the gross moist stability due to CO2increase, thereby promoting ascent or weakening descent in the atmosphere. Significance StatementLarge-scale tropical atmospheric circulations are expected to weaken as a result of global warming, having a significant impact on tropical precipitation. Because the atmosphere and oceans are inextricably linked, any subtle change in one can affect the other. For this reason, it is critical to understand the role of ocean circulation change in steering the response of large-scale tropical atmospheric circulation to anthropogenic warming. This study approaches the aforementioned scientific question from the novel perspective of ocean heat uptake. It demonstrates how changes in ocean circulation affect heat uptake over tropical oceans, modifying vertical motion and the Walker and Hadley cells in the tropical atmosphere in a warming climate. 
    more » « less
  2. Abstract The evolution of the spatial pattern of ocean surface warming affects global radiative feedback, yet different climate models provide varying estimates of future patterns. Paleoclimate data, especially from past warm periods, can help constrain future equilibrium warming patterns. By analyzing marine temperature records spanning the past 10 million years with a regression‐based technique that removes temporal dimensions, we extract long‐term ocean warming patterns and quantify relative sea surface temperature changes across the global ocean. This analysis revealed a distinct pattern of amplified warming that aligns with equilibrated model simulations under high CO2conditions, yet differs from the transient warming pattern observed over the past 160 years. This paleodata‐model comparison allows us to identify models that better capture fundamental aspects of Earth's warming response, while suggesting how ocean heat uptake and circulation changes modify the development of warming patterns over time. By combining this paleo‐ocean warming pattern with equilibrated model simulations, we characterized the likely evolution of global ocean warming as the climate system approaches equilibrium. 
    more » « less
  3. Abstract The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air‐sea carbon exchange remains unclear. Using a 1/20° physical‐biogeochemical coupled ocean model, we examined the impact of the current‐wind interaction on the surface carbon concentration and the air‐sea carbon exchange in the Southern Ocean. The current‐wind interaction decreased winter partial pressure of CO2(pCO2) at the ocean surface mainly south of the northern subantarctic front. It also reducedpCO2in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2was found to be reduced by approximately 17%when including current‐wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current‐wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current‐wind interactions in the Southern Ocean can overestimate winter CO2outgassing. 
    more » « less
  4. Abstract To examine seasonal and regional variabilities in metabolic status and the coupling of net community production (NCP) and air‐sea CO2fluxes in the western Arctic Ocean, we collected underway measurements of surface O2/Ar and partial pressure of CO2(pCO2) in the summers of 2016 and 2018. With a box‐model, we demonstrate that accounting for local sea ice history (in addition to wind history) is important in estimating NCP from biological oxygen saturation (Δ(O2/Ar)) in polar regions. Incorporating this sea ice history correction, we found that most of the western Arctic exhibited positive Δ(O2/Ar) and negativepCO2saturation, Δ(pCO2), indicative of net autotrophy but with the relationship between the two parameters varying regionally. In the heavy ice‐covered areas, where air‐sea gas exchange was suppressed, even minor NCP resulted in relatively high Δ(O2/Ar) and lowpCO2in water due to limited gas exchange. Within the marginal ice zone, NCP and CO2flux magnitudes were strongly inversely correlated, suggesting an air to sea CO2flux induced primarily by biological CO2removal from surface waters. Within ice‐free waters, the coupling of NCP and CO2flux varied according to nutrient supply. In the oligotrophic Canada Basin, NCP and CO2flux were both small, controlled mainly by air‐sea gas exchange. On the nutrient‐rich Chukchi Shelf, NCP was strong, resulting in great O2release and CO2uptake. This regional overview of NCP and CO2flux in the western Arctic Ocean, in its various stages of ice‐melt and nutrient status, provides useful insight into the possible biogeochemical evolution of rapidly changing polar oceans. 
    more » « less
  5. Abstract We investigate the dependence of radiative feedback on the pattern of sea‐surface temperature (SST) change in 14 Atmospheric General Circulation Models (AGCMs) forced with observed variations in SST and sea‐ice over the historical record from 1871 to near‐present. We find that over 1871–1980, the Earth warmed with feedbacks largely consistent and strongly correlated with long‐term climate sensitivity feedbacks (diagnosed from corresponding atmosphere‐ocean GCMabrupt‐4xCO2simulations). Post 1980, however, the Earth warmed with unusual trends in tropical Pacific SSTs (enhanced warming in the west, cooling in the east) and cooling in the Southern Ocean that drove climate feedback to be uncorrelated with—and indicating much lower climate sensitivity than—that expected for long‐term CO2increase. We show that these conclusions are not strongly dependent on the Atmospheric Model Intercomparison Project (AMIP) II SST data set used to force the AGCMs, though the magnitude of feedback post 1980 is generally smaller in nine AGCMs forced with alternative HadISST1 SST boundary conditions. We quantify a “pattern effect” (defined as the difference between historical and long‐term CO2feedback) equal to 0.48 ± 0.47 [5%–95%] W m−2 K−1for the time‐period 1871–2010 when the AGCMs are forced with HadISST1 SSTs, or 0.70 ± 0.47 [5%–95%] W m−2 K−1when forced with AMIP II SSTs. Assessed changes in the Earth's historical energy budget agree with the AGCM feedback estimates. Furthermore satellite observations of changes in top‐of‐atmosphere radiative fluxes since 1985 suggest that the pattern effect was particularly strong over recent decades but may be waning post 2014. 
    more » « less