skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Site‐Specific Reduction‐Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb + Complexation
Abstract The chemical reduction of π‐conjugated bilayer nanographene1(C138H120) with K and Rb in the presence of 18‐crown‐6 affords [K+(18‐crown‐6)(THF)2][{K+(18‐crown‐6)}2(THF)0.5][C138H1223−] (2) and [Rb+(18‐crown‐6)2][{Rb+(18‐crown‐6)}2(C138H1223−)] (3). Whereas K+cations are fully solvent‐separated from the trianionic core thus affording a “naked”1.3anion, Rb+cations are coordinated to the negatively charged layers of1.3. According to DFT calculations, the localization of the first two electrons in the helicene moiety leads to an unprecedented site‐specific hydrogenation process at the carbon atoms located on the edge of the helicene backbone. This uncommon reduction‐induced site‐specific hydrogenation provokes dramatic changes in the (electronic) structure of1as the helicene backbone becomes more compressed and twisted upon chemical reduction, which results in a clear slippage of the bilayers.  more » « less
Award ID(s):
1834750 2003411
PAR ID:
10364321
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
10
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The two‐fold reduction of tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT, or tetraphenylene,1) with K, Rb, and Cs metals reveals a distinctive core transformation pathway: a newly formed C−C bond converts the central eight‐membered ring into a twisted core with two fused five‐membered rings. This C−C bond of 1.589(3)–1.606(6) Å falls into a single σ‐bond range and generates two perpendicular π‐surfaces with dihedral angles of 110.3(9)°–117.4(1)° in the1TR2−dianions. As a result, the highly contorted1TR2−ligand exhibits a “butterfly” shape and could provide different coordination sites for metal‐ion binding. The K‐induced reduction of1in THF affords a polymeric product with low solubility, namely [{K+(THF)}2(1TR2−)] (K2‐1TR2−). The use of a secondary ligand facilitates the isolation of discrete complexes with heavy alkali metals, [Rb+(18‐crown‐6)]2[1TR2−] (Rb2‐1TR2−) and [Cs+(18‐crown‐6)]2[1TR2−] (Cs2‐1TR2−). Both internal and external coordination are observed inK2‐1TR2−, while the bulky 18‐crown‐6 ligand only allows external metal binding inRb2‐1TR2−andCs2‐1TR2−. The reversibility of the two‐fold reduction and bond rearrangement is demonstrated by NMR spectroscopy. Computational analysis shows that the heavier alkali metals enable effective charge transfer from the1TR2−TBCOT dianion, however, the aromaticity of the polycyclic ligand remains largely unaffected. 
    more » « less
  2. Abstract Chemical reduction of a benzo‐fused double [7]helicene (1) with two alkali metals, K and Rb, provided access to three different reduced states of1. The doubly‐reduced helicene12−has been characterized by single‐crystal X‐ray diffraction as a solvent‐separated ion triplet with two potassium counterions. The triply‐ and tetra‐reduced helicenes,13−and14−, have been crystallized together in an equimolar ratio and both form the contact‐ion complexes with two Rb+ions each, leaving three remaining Rb+ions wrapped by crown ether and THF molecules. As structural consequence of the stepwise reduction of1, the central axis of helicene becomes more compressed upon electron addition (1.42 Å in14−vs. 2.09 Å in1). This is accompanied by an extra core twist, as the peripheral dihedral angle increases from 16.5° in1to 20.7° in14−. Theoretical calculations provided the pattern of negative charge build‐up and distribution over the contorted helicene framework upon each electron addition, and the results are consistent with the X‐ray crystallographic and NMR spectroscopic data. 
    more » « less
  3. Abstract Mono‐ and dianions of 2‐tert‐butyl‐3a2‐azapentabenzo[bc,ef,hi,kl,no]corannulene (1 a) were synthesized by chemical reduction with sodium and cesium metals, and crystallized as the corresponding salts in the presence of 18‐crown‐6 ether. X‐ray diffraction analysis of the sodium salt, [{Na+(18‐crown‐6)(THF)2}3{Na+(18‐crown‐6)(THF)}(1 a2−)2], revealed the presence of a naked dianion. In contrast, controlled reaction of1 awith Cs allowed the isolation of singly and doubly reduced forms of1 a, both forming π‐complexes with cesium ions in the solid state. In [{Cs+(18‐crown‐6)}(1 a)]⋅THF, asymmetric binding of the Cs+ion to the concave surface of1 ais observed, whereas in [{Cs+(18‐crown‐6)}2(1 a2−)], two Cs+ions bind to both the concave and convex surfaces of the dianion. The present study provides the first successful isolation and characterization of the reduced products of heteroatom‐containing buckybowl molecules. 
    more » « less
  4. The use of 18-crown-6 (18-c-6) in place of 2.2.2-cryptand (crypt) in rare earth amide reduction reactions involving potassium has proven to be crucial in the synthesis of Ln( ii ) complexes and isolation of their CO reduction products. The faster speed of crystallization with 18-c-6 appears to be important. Previous studies have shown that reduction of the trivalent amide complexes Ln(NR 2 ) 3 (R = SiMe 3 ) with potassium in the presence of 2.2.2-cryptand (crypt) forms the divalent [K(crypt)][Ln II (NR 2 ) 3 ] complexes for Ln = Gd, Tb, Dy, and Tm. However, for Ho and Er, the [Ln(NR 2 ) 3 ] 1− anions were only isolable with [Rb(crypt)] 1+ counter-cations and isolation of the [Y II (NR 2 ) 3 ] 1− anion was not possible under any of these conditions. We now report that by changing the potassium chelator from crypt to 18-crown-6 (18-c-6), the [Ln(NR 2 ) 3 ] 1− anions can be isolated not only for Ln = Gd, Tb, Dy, and Tm, but also for Ho, Er, and Y. Specifically, these anions are isolated as salts of a 1 : 2 potassium : crown sandwich cation, [K(18-c-6) 2 ] 1+ , i.e. [K(18-c-6) 2 ][Ln(NR 2 ) 3 ]. The [K(18-c-6) 2 ] 1+ counter-cation was superior not only in the synthesis, but it also allowed the isolation of crystallographically-characterizable products from reactions of CO with the [Ln(NR 2 ) 3 ] 1− anions that were not obtainable from the [K(crypt)] 1+ analogs. Reaction of CO with [K(18-c-6) 2 ][Ln(NR 2 ) 3 ], generated in situ , yielded crystals of the ynediolate products, {[(R 2 N) 3 Ln] 2 (μ-OCCO)} 2− , which crystallized with counter-cations possessing 2 : 3 potassium : crown ratios, i.e. {[K 2 (18-c-6) 3 ]} 2+ , for Gd, Dy, Ho. In contrast, reaction of CO with a solution of isolated [K(18-c-6) 2 ][Gd(NR 2 ) 3 ], produced crystals of an enediolate complex isolated with a counter-cation with a 2 : 2 potassium : crown ratio namely [K(18-c-6)] 2 2+ in the complex [K(18-c-6)] 2 {[(R 2 N) 2 Gd 2 (μ-OCHCHO) 2 ]}. 
    more » « less
  5. Abstract Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],1, as well as [K(crypt)][Cp*2NdCl2],2, and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3, was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4. Attempts to make4from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5, which allows direct comparison with the bimetallic Eu(II) complex4. Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6, or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a, depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a. In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9. The (bipy)1−ligands of9are arranged in a parallel orientation, as observed in the structure of3, except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10. 
    more » « less