The dianion and dication of tetramesityl‐substituted tetracyclopentatetraphenylene, a circulene consisting of alternating five‐ and six‐membered rings, have been generated by reduction with alkali metals and oxidation with antimony(V) halides, respectively. They are theoretically predicted to adopt double annulenoid structures called annulene‐within‐an‐annulene models in which the outer and inner conjugation circuits are significantly decoupled. The theoretical structures were experimentally proven by X‐ray crystallographic analyses and the electronic configurations were supported by MCD spectra. Based on the13C NMR chemical shifts, negative and positive charges are shown to be located mainly at the outer periphery, indicating that the dianion and dication have delocalized 22‐π and 18‐π electron outer perimeters, respectively, and 8‐π electron structure at the inner ring. Notably, the dianion has an open‐shell character, whereas the dication has a closed‐shell ground state.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Chemical reduction of a benzo‐fused double [7]helicene (
1 ) with two alkali metals, K and Rb, provided access to three different reduced states of1 . The doubly‐reduced helicene1 2−has been characterized by single‐crystal X‐ray diffraction as a solvent‐separated ion triplet with two potassium counterions. The triply‐ and tetra‐reduced helicenes,1 3−and1 4−, have been crystallized together in an equimolar ratio and both form the contact‐ion complexes with two Rb+ions each, leaving three remaining Rb+ions wrapped by crown ether and THF molecules. As structural consequence of the stepwise reduction of1 , the central axis of helicene becomes more compressed upon electron addition (1.42 Å in1 4−vs. 2.09 Å in1 ). This is accompanied by an extra core twist, as the peripheral dihedral angle increases from 16.5° in1 to 20.7° in1 4−. Theoretical calculations provided the pattern of negative charge build‐up and distribution over the contorted helicene framework upon each electron addition, and the results are consistent with the X‐ray crystallographic and NMR spectroscopic data. -
Abstract Chemical reduction of OBO‐fused double[5]helicene with Group 1 metals (Na and K) has been investigated for the first time. Two doubly‐reduced products have been isolated and structurally characterized by single‐crystal X‐ray diffraction, revealing a solvent‐separated ion triplet (SSIT) with Na+ions and a contact‐ion pair (CIP) with K+ion. As the key structural outcome, the X‐ray crystallographic analysis discloses the consequences of adding two electrons to the double helicene core in the SSIT without metal binding and reveals the preferential binding site in the CIP with K+counterions. In both products, an increase in the twisting of the double helicene core upon charging was observed. The negative charge localization at the central core has been identified by theoretical calculations, which are in full agreement with X‐ray crystallographic and NMR spectroscopic results. Notably, it was confirmed that the two‐electron reduction of OBO‐fused double[5]helicene is reversible.
-
Abstract Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a charge into a helical conjugated π‐system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co‐crystallized with {K+(18‐crown‐6)(THF)} and {Cs+2(18‐crown‐6)3}. UV/Vis‐monitoring of these systems shows a time‐dependent formation of mono‐ and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion.
-
Abstract Mono‐ and dianions of 2‐
tert ‐butyl‐3a2‐azapentabenzo[bc ,ef ,hi ,kl ,no ]corannulene (1 a ) were synthesized by chemical reduction with sodium and cesium metals, and crystallized as the corresponding salts in the presence of 18‐crown‐6 ether. X‐ray diffraction analysis of the sodium salt, [{Na+(18‐crown‐6)(THF)2}3{Na+(18‐crown‐6)(THF)}(1 a 2−)2], revealed the presence of a naked dianion. In contrast, controlled reaction of1 a with Cs allowed the isolation of singly and doubly reduced forms of1 a , both forming π‐complexes with cesium ions in the solid state. In [{Cs+(18‐crown‐6)}(1 a −)]⋅THF, asymmetric binding of the Cs+ion to the concave surface of1 a −is observed, whereas in [{Cs+(18‐crown‐6)}2(1 a 2−)], two Cs+ions bind to both the concave and convex surfaces of the dianion. The present study provides the first successful isolation and characterization of the reduced products of heteroatom‐containing buckybowl molecules. -
null (Ed.)Chemical reduction of several cycloparaphenylenes (CPPs) ranging in size from [8]CPP to [12]CPP has been investigated with potassium metal in THF. The X-ray diffraction characterization of the resulting doubly-reduced [ n ]CPPs provided a unique series of carbon nanohoops with increasing dimensions and core flexibility for the first comprehensive structural analysis. The consequences of electron acquisition by a [ n ]CPP core have been analyzed in comparison with the neutral parents. The addition of two electrons to the cyclic carbon framework of [ n ]CPPs leads to the characteristic elliptic core distortion and facilitates the internal encapsulation of sizable cationic guests. Molecular and solid-state structure changes, alkali metal binding and unique size-dependent host abilities of the [ n ]CPP 2− series with n = 6–12 are discussed. This in-depth analysis opens new perspectives in supramolecular chemistry of [ n ]CPPs and promotes their applications in size-selective guest encapsulation and chemical separation.more » « less
-
null (Ed.)One-electron reduction of bowl-shaped indenocorannulene, C 26 H 12 , with Rb metal in THF affords [{Rb + (18-crown-6)} 2 (C 26 H 12 –C 26 H 12 ) 2− ]·4THF, as confirmed by single-crystal X-ray diffraction. The product consists of a dimeric σ-bonded dianion (C–C, 1.568(7) Å) having two endo -η 6 coordinated {Rb + (18-crown-6)} moieties (Rb–C, 3.272(4)–3.561(4) Å). The (C 26 H 12 –C 26 H 12 ) 2− dimer represents the first crystallographically confirmed example of spontaneous coupling for indenocorannulene monoanion radicals, C 26 H 12 ˙ − . Comprehensive theoretical investigation of the new dimer confirms the single σ-bond character of the linker and reveals a significant increase of both thermodynamic and kinetic stability of [σ-(C 26 H 12 ) 2 ] 2− in comparison with analogues formed by such π-bowls as corannulene and its dibenzo-derivative. The in-depth computational analysis and direct comparison of the series demonstrates the effect of curvature on radical coupling processes, allowing control over stability and reactivity of bowl-shaped π-radicals.more » « less