skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model parameterization to represent processes at unresolved scales and changing properties of evolving systems
Abstract Modeling has become an indispensable tool for scientific research. However, models generate great uncertainty when they are used to predict or forecast ecosystem responses to global change. This uncertainty is partly due to parameterization, which is an essential procedure for model specification via defining parameter values for a model. The classic doctrine of parameterization is that a parameter is constant. However, it is commonly known from modeling practice that a model that is well calibrated for its parameters at one site may not simulate well at another site unless its parameters are tuned again. This common practice implies that parameter values have to vary with sites. Indeed, parameter values that are estimated using a statistically rigorous approach, that is, data assimilation, vary with time, space, and treatments in global change experiments. This paper illustrates that varying parameters is to account for both processes at unresolved scales and changing properties of evolving systems. A model, no matter how complex it is, could not represent all the processes of one system at resolved scales. Interactions of processes at unresolved scales with those at resolved scales should be reflected in model parameters. Meanwhile, it is pervasively observed that properties of ecosystems change over time, space, and environmental conditions. Parameters, which represent properties of a system under study, should change as well. Tuning has been practiced for many decades to change parameter values. Yet this activity, unfortunately, did not contribute to our knowledge on model parameterization at all. Data assimilation makes it possible to rigorously estimate parameter values and, consequently, offers an approach to understand which, how, how much, and why parameters vary. To fully understand those issues, extensive research is required. Nonetheless, it is clear that changes in parameter values lead to different model predictions even if the model structure is the same.  more » « less
Award ID(s):
1655499
PAR ID:
10364329
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
26
Issue:
3
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1109-1117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soil moisture and evapotranspiration (ET) are important components of boreal forest hydrology that affect ecological processes and land‐atmosphere feedbacks. Future trends in soil moisture in particular are uncertain. Therefore, accurate modeling of these dynamics and understanding of concomitant sources of uncertainty are critical. Here, we conduct a global sensitivity analysis, Monte Carlo parameterization, and analysis of parameter uncertainty and its contribution to future soil moisture and ET uncertainty using a physically based ecohydrologic model in multiple boreal forest types. Soil and plant hydraulic parameters and LAI have the largest effects on simulated summer soil moisture at two contrasting sites. In future scenario simulations, the selection of parameters and global climate model (GCM) choice between two GCMs influence projected changes in soil moisture and ET about as much as the projected effects of climate change in the less sensitive GCM with a late‐century, high‐emissions scenario, though the relative effects of parameters, GCM, and climate vary among hydrologic variables and study sites. Saturated volumetric water content and sensitivity of stomatal conductance to vapor pressure deficit have the most statistically significant effects on change in ET and soil moisture, though there is considerable variability between sites and GCMs. The results of this study provide estimates of: (a) parameter importance and statistical significance for soil moisture modeling, (b) parameter values for physically based soil‐vegetation‐atmosphere transfer models in multiple boreal forest types, and (c) the contributions of uncertainty in these parameters to soil moisture and ET uncertainty in future climates. 
    more » « less
  2. Current biogeochemical models produce carbon–climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first‐order or Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data with high‐quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics‐function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions. 
    more » « less
  3. Abstract Climate change is having significant impacts on Earth’s ecosystems and carbon budgets, and in the Arctic may drive a shift from an historic carbon sink to a source. Large uncertainties in terrestrial biosphere models (TBMs) used to forecast Arctic changes demonstrate the challenges of determining the timing and extent of this possible switch. This spread in model predictions can limit the ability of TBMs to guide management and policy decisions. One of the most influential sources of model uncertainty is model parameterization. Parameter uncertainty results in part from a mismatch between available data in databases and model needs. We identify that mismatch for three TBMs, DVM-DOS-TEM, SIPNET and ED2, and four databases with information on Arctic and boreal above- and belowground traits that may be applied to model parametrization. However, focusing solely on such data gaps can introduce biases towards simple models and ignores structural model uncertainty, another main source for model uncertainty. Therefore, we develop a causal loop diagram (CLD) of the Arctic and boreal ecosystem that includes unquantified, and thus unmodeled, processes. We map model parameters to processes in the CLD and assess parameter vulnerability via the internal network structure. One important substructure, feed forward loops (FFLs), describe processes that are linked both directly and indirectly. When the model parameters are data-informed, these indirect processes might be implicitly included in the model, but if not, they have the potential to introduce significant model uncertainty. We find that the parameters describing the impact of local temperature on microbial activity are associated with a particularly high number of FFLs but are not constrained well by existing data. By employing ecological models of varying complexity, databases, and network methods, we identify the key parameters responsible for limited model accuracy. They should be prioritized for future data sampling to reduce model uncertainty. 
    more » « less
  4. The parameterization of subgrid‐scale processes such as boundary layer (PBL) turbulence introduces uncertainty in Earth System Model (ESM) results. This uncertainty can contribute to or exacerbate existing biases in representing key physical processes. This study analyzes the influence of tunable parameters in an experimental version of the Cloud Layers Unified by Binormals (CLUBBX) scheme. CLUBB is the operational PBL parameterization in the Community Atmosphere Model version 6 (CAM6), the atmospheric component of the Community ESM version 2 (CESM2). We perform the Morris one‐at‐a‐time (MOAT) parameter sensitivity analysis using short‐term (3‐day), initialized hindcasts of CAM6‐CLUBBX with 24 unique initial conditions. Several input parameters modulating vertical momentum flux appear most influential for various regionally‐averaged quantities, namely surface stress and shortwave cloud forcing (SWCF). These parameter sensitivities have a spatial dependence, with parameters governing momentum flux most influential in regions of high vertical wind shear (e.g., the mid‐latitude storm tracks). We next evaluate several experimental 20‐year simulations of CAM6‐CLUBBX with targeted parameter perturbations. We find that parameter perturbations produce similar physical mechanisms in both short‐term and long‐term simulations, but these physical responses can be muted due to nonlinear feedbacks manifesting over time scales longer than 3 days, thus causing differences in how output metrics respond in the long‐term simulations. Analysis of turbulent fluxes in CLUBBX indicates that the influential parameters affect vertical fluxes of heat, moisture, and momentum, providing physical pathways for the sensitivities identified in this study. 
    more » « less
  5. Abstract. Spatially distributed hydrological models are commonly employed to optimize the locations of engineering control measures across a watershed. Yet, parameter screening exercises that aim to reduce the dimensionality of the calibration search space are typically completed only for gauged locations, like the watershed outlet, and use screening metrics that are relevant to calibration instead of explicitly describing the engineering decision objectives. Identifying parameters that describe physical processes in ungauged locations that affect decision objectives should lead to a better understanding of control measure effectiveness. This paper provides guidance on evaluating model parameter uncertainty at the spatial scales and flow magnitudes of interest for such decision-making problems. We use global sensitivity analysis to screen parameters for model calibration, and to subsequently evaluate the appropriateness of using multipliers to adjust the values of spatially distributed parameters to further reduce dimensionality. We evaluate six sensitivity metrics, four of which align with decision objectives and two of which consider model residual error that would be considered in spatial optimizations of engineering designs. We compare the resulting parameter selection for the basin outlet and each hillslope. We also compare basin outlet results for four calibration-relevant metrics. These methods were applied to a RHESSys ecohydrological model of an exurban forested watershed near Baltimore, MD, USA. Results show that (1) the set of parameters selected by calibration-relevant metrics does not include parameters that control decision-relevant high and low streamflows, (2) evaluating sensitivity metrics at the basin outlet misses many parameters that control streamflows in hillslopes, and (3) for some multipliers, calibrating all parameters in the set being adjusted may be preferable to using the multiplier if parameter sensitivities are significantly different, while for others, calibrating a subset of the parameters may be preferable if they are not all influential. Thus, we recommend that parameter screening exercises use decision-relevant metrics that are evaluated at the spatial scales appropriate to decision making. While including more parameters in calibration will exacerbate equifinality, the resulting parametric uncertainty should be important to consider in discovering control measures that are robust to it. 
    more » « less