skip to main content


Title: Tracking Passivation and Cation Flux at Incipient Solid‐Electrolyte Interphases on Multi‐Layer Graphene using High Resolution Scanning Electrochemical Microscopy
Abstract

The solid electrolyte interphase (SEI) is a dynamic, electronically insulating film that forms on the negative electrode of Li+batteries (LIBs) and enables ion movement to/from the interface while preventing electrolyte breakdown. However, there is limited comparative understanding of LIB SEIs with respect to those formed on Na+and K+electrolytes for emerging battery concepts. We used scanning electrochemical microscopy (SECM) for the in situ interfacial analysis of incipient SEIs in Li+, K+and Na+electrolytes formed on multi‐layer graphene. Feedback images using 300 nm SECM probes and ion‐sensitive measurements indicated a superior passivation and highest cation flux for a Li+‐SEI in contrast to Na+and K+‐SEIs. Ex situ X‐ray photoelectron spectroscopy indicated significant fluoride formation for only Li+and Na+‐SEIs, enabling correlation to in situ SECM measurements. While SEI chemistry remains complex, these electroanalytical methods reveal links between chemical variables and the interfacial properties of materials for energy storage.

 
more » « less
Award ID(s):
1709391
NSF-PAR ID:
10364336
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemElectroChem
Volume:
9
Issue:
5
ISSN:
2196-0216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Na-ion batteries (NIBs) are proposed as a promising candidate for beyond Li-ion chemistries, however, a key challenge associated with NIBs is the inability to achieve intercalation in graphite anodes. This phenomenon has been investigated and is believed to arise due to the thermodynamic instability of Na-intercalated graphite. We have recently demonstrated theoretical calculations showing it is possible to achieve thermodynamically stable Na-intercalated graphene structures with a fluorine surface modifier. Here, we present experimental evidence that Na + intercalation is indeed possible in fluorinated few-layer graphene (F-FLG) structures using cyclic voltammetry (CV), ion-sensitive scanning electrochemical microscopy (SECM) and in situ Raman spectroscopy. SECM and Raman spectroscopy confirmed Na + intercalation in F-FLG, while CV measurements allowed us to quantify Na-intercalated F-FLG stoichiometries around NaC 14–18 . These stoichiometries are higher than the previously reported values of NaC 186 in graphite. Our experiments revealed that reversible Na + ion intercalation also requires a pre-formed Li-based SEI in addition to the surface fluorination, thereby highlighting the critical role of SEI in controlling ion-transfer kinetics in alkali-ion batteries. In summary, our findings highlight the use of surface modification and careful study of electrode-electrolyte interfaces and interphases as an enabling strategy for NIBs. 
    more » « less
  2. Abstract

    The solid electrolyte interphase (SEI) has been identified as a key challenge for Li metal anodes. The brittle and inhomogeneous native SEI generated by parasitic reactions between Li and liquid electrolytes can devastate battery performance; therefore, artificial SEIs (ASEIs) have been proposed as an effective strategy to replace native SEIs. Herein, as a collaboration between academia and industrial R&D teams, a multifunctional (crystalline, high modulus, and robust, Li+ion conductive, electrolyte‐blocking, and solution processable) ASEI material, LiAl‐FBD (where “FBD” refers to 2,2,3,3‐tetrafluoro‐1,4‐butanediol), for improving Li metal battery performance is designed and synthesized. The LiAl‐FBD crystal structure consists of Al3+ions bridged by FBD2–ligands to form anion clusters while Li+ions are loosely bound at the periphery, enabling an Li+ion conductivity of 9.4 × 10–6S cm–1. The fluorinated, short ligands endow LiAl‐FBD with electrolyte phobicity and high modulus. The ASEI is found to prevent side reactions and extend the cycle life of Li metal electrodes. Specifically, pairing LiAl‐FBD coated 50 µm thick Li with industrial 3.5 mAh cm–2NMC811 cathode and 2.8 µL mAh–1lean electrolyte, the Li metal full cells show superior cycle life compared to bare ones, achieving 250 cycles at 1 mA cm–2.

     
    more » « less
  3. Abstract

    Solid polymer electrolytes based on plastic crystals are promising for solid‐state sodium metal (Na0) batteries, yet their practicality has been hindered by the notorious Na0‐electrolyte interface instability issue, the underlying cause of which remains poorly understood. Here, by leveraging a model plasticized polymer electrolyte based on conventional succinonitrile plastic crystals, we uncover its failure origin in Na0batteries is associated with the formation of a thick and non‐uniform solid electrolyte interphase (SEI) and whiskery Na0nucleation/growth. Furthermore, we design a new additive‐embedded plasticized polymer electrolyte to manipulate the Na0deposition and SEI formulation. For the first time, we demonstrate that introducing fluoroethylene carbonate (FEC) additive into the succinonitrile‐plasticized polymer electrolyte can effectively protect Na0against interfacial corrosion by facilitating the growth of dome‐like Na0with thin, amorphous, and fluorine‐rich SEIs, thus enabling significantly improved performances of Na//Na symmetric cells (1,800 h at 0.5 mA cm−2) and Na//Na3V2(PO4)3full cells (93.0 % capacity retention after 1,200 cycles at 1 C rate in coin cells and 93.1 % capacity retention after 250 cycles at C/3 in pouch cells at room temperature). Our work provides valuable insights into the interfacial failure of plasticized polymer electrolytes and offers a promising solution to resolving the interfacial instability issue.

     
    more » « less
  4. Abstract

    Solid polymer electrolytes based on plastic crystals are promising for solid‐state sodium metal (Na0) batteries, yet their practicality has been hindered by the notorious Na0‐electrolyte interface instability issue, the underlying cause of which remains poorly understood. Here, by leveraging a model plasticized polymer electrolyte based on conventional succinonitrile plastic crystals, we uncover its failure origin in Na0batteries is associated with the formation of a thick and non‐uniform solid electrolyte interphase (SEI) and whiskery Na0nucleation/growth. Furthermore, we design a new additive‐embedded plasticized polymer electrolyte to manipulate the Na0deposition and SEI formulation. For the first time, we demonstrate that introducing fluoroethylene carbonate (FEC) additive into the succinonitrile‐plasticized polymer electrolyte can effectively protect Na0against interfacial corrosion by facilitating the growth of dome‐like Na0with thin, amorphous, and fluorine‐rich SEIs, thus enabling significantly improved performances of Na//Na symmetric cells (1,800 h at 0.5 mA cm−2) and Na//Na3V2(PO4)3full cells (93.0 % capacity retention after 1,200 cycles at 1 C rate in coin cells and 93.1 % capacity retention after 250 cycles at C/3 in pouch cells at room temperature). Our work provides valuable insights into the interfacial failure of plasticized polymer electrolytes and offers a promising solution to resolving the interfacial instability issue.

     
    more » « less
  5. Abstract

    Anodes for lithium metal batteries, sodium metal batteries, and potassium metal batteries are susceptible to failure due to dendrite growth. This review details the structure–chemistry–performance relations in membranes that stabilize the anodes’ solid electrolyte interphase (SEI), allowing for stable electrochemical plating/stripping. Case studies involving Li, Na, and K are presented to illustrate key concepts. “Classical” versus “modern” understandings of the SEI are described, with an emphasis on the new structural insights obtained through novel analytical techniques, including in situ liquid‐secondary ion mass spectroscopy, titration gas chromatography, and tip‐enhanced Raman spectroscopy. This Review highlights diverse approaches for increasing SEI stability, either by inserting a secondary layer between the native SEI and the separator, or by combining the membrane with a native SEI to form a hybrid composite. Exciting and nonintuitive findings are discussed, such as that the metal anode roughness profoundly affects the SEI structure and stability, or that organic artificial SEI‐layers may be more effective than the native inorganic–organic SEIs. Emerging multifunctional architectures are presented, which serve a dual role as metal hosts and metal surface protection layers. Throughout the Review, fruitful future research directions and the critical areas where there is incomplete understanding are discussed.

     
    more » « less