Mendelian Randomization (MR) has emerged as a powerful approach to leverage genetic instruments to infer causality between pairs of traits in observational studies. However, the results of such studies are susceptible to biases due to weak instruments as well as the confounding effects of population stratification and horizontal pleiotropy. Here, we show that family data can be leveraged to design MR tests that are provably robust to confounding from population stratification, assortative mating, and dynastic effects. We demonstrate in simulations that our approach, MR-Twin, is robust to confounding from population stratification and is not affected by weak instrument bias, while standard MR methods yield inflated false positive rates. We then conducted an exploratory analysis of MR-Twin and other MR methods applied to 121 trait pairs in the UK Biobank dataset. Our results suggest that confounding from population stratification can lead to false positives for existing MR methods, while MR-Twin is immune to this type of confounding, and that MR-Twin can help assess whether traditional approaches may be inflated due to confounding from population stratification.
more »
« less
Weak‐instrument robust tests in two‐sample summary‐data Mendelian randomization
Abstract Mendelian randomization (MR) has been a popular method in genetic epidemiology to estimate the effect of an exposure on an outcome using genetic variants as instrumental variables (IV), with two‐sample summary‐data MR being the most popular. Unfortunately, instruments in MR studies are often weakly associated with the exposure, which can bias effect estimates and inflate Type I errors. In this work, we propose test statistics that are robust under weak‐instrument asymptotics by extending the Anderson–Rubin, Kleibergen, and the conditional likelihood ratio test in econometrics to two‐sample summary‐data MR. We also use the proposed Anderson–Rubin test to develop a point estimator and to detect invalid instruments. We conclude with a simulation and an empirical study and show that the proposed tests control size and have better power than existing methods with weak instruments.
more »
« less
- Award ID(s):
- 1811414
- PAR ID:
- 10364351
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biometrics
- Volume:
- 78
- Issue:
- 4
- ISSN:
- 0006-341X
- Format(s):
- Medium: X Size: p. 1699-1713
- Size(s):
- p. 1699-1713
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
BackgroundGenome‐wide association studies (GWASs) have identified thousands of genetic variants that are associated with many complex traits. However, their biological mechanisms remain largely unknown. Transcriptome‐wide association studies (TWAS) have been recently proposed as an invaluable tool for investigating the potential gene regulatory mechanisms underlying variant‐trait associations. Specifically, TWAS integrate GWAS with expression mapping studies based on a common set of variants and aim to identify genes whose GReX is associated with the phenotype. Various methods have been developed for performing TWAS and/or similar integrative analysis. Each such method has a different modeling assumption and many were initially developed to answer different biological questions. Consequently, it is not straightforward to understand their modeling property from a theoretical perspective. ResultsWe present a technical review on thirteen TWAS methods. Importantly, we show that these methods can all be viewed as two‐sample Mendelian randomization (MR) analysis, which has been widely applied in GWASs for examining the causal effects of exposure on outcome. Viewing different TWAS methods from an MR perspective provides us a unique angle for understanding their benefits and pitfalls. We systematically introduce the MR analysis framework, explain how features of the GWAS and expression data influence the adaptation of MR for TWAS, and re‐interpret the modeling assumptions made in different TWAS methods from an MR angle. We finally describe future directions for TWAS methodology development. ConclusionsWe hope that this review would serve as a useful reference for both methodologists who develop TWAS methods and practitioners who perform TWAS analysis.more » « less
-
Abstract Integrating results from genome-wide association studies (GWASs) and gene expression studies through transcriptome-wide association study (TWAS) has the potential to shed light on the causal molecular mechanisms underlying disease etiology. Here, we present a probabilistic Mendelian randomization (MR) method, PMR-Egger, for TWAS applications. PMR-Egger relies on a MR likelihood framework that unifies many existing TWAS and MR methods, accommodates multiple correlated instruments, tests the causal effect of gene on trait in the presence of horizontal pleiotropy, and is scalable to hundreds of thousands of individuals. In simulations, PMR-Egger provides calibrated type I error control for causal effect testing in the presence of horizontal pleiotropic effects, is reasonably robust under various types of model misspecifications, is more powerful than existing TWAS/MR approaches, and can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASs including the UK Biobank.more » « less
-
This paper introduces a new identification‐ and singularity‐robust conditional quasi‐likelihood ratio (SR‐CQLR) test and a new identification‐ and singularity‐robust Anderson and Rubin (1949) (SR‐AR) test for linear and nonlinear moment condition models. Both tests are very fast to compute. The paper shows that the tests have correct asymptotic size and are asymptotically similar (in a uniform sense) under very weak conditions. For example, in i.i.d. scenarios, all that is required is that the moment functions and their derivatives have 2 + γ bounded moments for some γ > 0. No conditions are placed on the expected Jacobian of the moment functions, on the eigenvalues of the variance matrix of the moment functions, or on the eigenvalues of the expected outer product of the (vectorized) orthogonalized sample Jacobian of the moment functions. The SR‐CQLR test is shown to be asymptotically efficient in a GMM sense under strong and semi‐strong identification (for all k ≥ p , where k and p are the numbers of moment conditions and parameters, respectively). The SR‐CQLR test reduces asymptotically to Moreira's CLR test when p = 1 in the homoskedastic linear IV model. The same is true for p ≥ 2 in most, but not all, identification scenarios. We also introduce versions of the SR‐CQLR and SR‐AR tests for subvector hypotheses and show that they have correct asymptotic size under the assumption that the parameters not under test are strongly identified. The subvector SR‐CQLR test is shown to be asymptotically efficient in a GMM sense under strong and semi‐strong identification.more » « less
-
ABSTRACT Strong gravitational lensing is a powerful probe of the distribution of matter on sub-kpc scales. It can be used to test the existence of completely dark sub-haloes surrounding galaxies, as predicted by the standard cold dark matter model, or to test alternative dark matter models. The constraining power of the method depends strongly on photometric and astrometric precision and accuracy. We simulate and quantify the capabilities of upcoming adaptive optics systems and advanced instruments on ground-based telescopes, focusing as an illustration on the Keck Telescope (OSIRIS + KAPA, LIGER + KAPA) and the Thirty Meter Telescope (TMT; IRIS + NFIRAOS). We show that these new systems will achieve dramatic improvements over current ones in both photometric and astrometric precision. Narrow line flux ratio errors below 2 per cent, and submilliarcsecond astrometric precision will be attainable for typical quadruply imaged quasars. With TMT, the exposure times required will be of order a few minutes per system, enabling the follow-up of 100–1000 systems expected to be discovered by the Rubin, Euclid, and Roman Telescopes.more » « less