Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Mendelian randomization (MR) has been a popular method in genetic epidemiology to estimate the effect of an exposure on an outcome using genetic variants as instrumental variables (IV), with two‐sample summary‐data MR being the most popular. Unfortunately, instruments in MR studies are often weakly associated with the exposure, which can bias effect estimates and inflate Type I errors. In this work, we propose test statistics that are robust under weak‐instrument asymptotics by extending the Anderson–Rubin, Kleibergen, and the conditional likelihood ratio test in econometrics to two‐sample summary‐data MR. We also use the proposed Anderson–Rubin test to develop a point estimator and to detect invalid instruments. We conclude with a simulation and an empirical study and show that the proposed tests control size and have better power than existing methods with weak instruments.more » « less
-
Abstract Instrumental variables have been widely used to estimate the causal effect of a treatment on an outcome. Existing confidence intervals for causal effects based on instrumental variables assume that all of the putative instrumental variables are valid; a valid instrumental variable is a variable that affects the outcome only by affecting the treatment and is not related to unmeasured confounders. However, in practice, some of the putative instrumental variables are likely to be invalid. This paper presents two tools to conduct valid inference and tests in the presence of invalid instruments. First, we propose a simple and general approach to construct confidence intervals based on taking unions of well‐known confidence intervals. Second, we propose a novel test for the null causal effect based on a collider bias. Our two proposals outperform traditional instrumental variable confidence intervals when invalid instruments are present and can also be used as a sensitivity analysis when there is concern that instrumental variables assumptions are violated. The new approach is applied to a Mendelian randomization study on the causal effect of low‐density lipoprotein on globulin levels.more » « less
An official website of the United States government
