skip to main content


Title: Revealing the Field Sub-subgiant Population Using a Catalog of Active Giant Stars and Gaia EDR3
Abstract

Sub-subgiant stars (SSGs) fall below the subgiant branch and/or red of the giant branch in open and globular clusters, an area of the color–magnitude diagram (CMD) not populated by standard stellar evolution tracks. One hypothesis is that SSGs result from rapid rotation in subgiants or giants due to tidal synchronization in a close binary. The strong magnetic fields generated inhibit convection, which in turn produces large starspots, radius inflation, and lower-than-expected average surface temperatures and luminosities. Here we cross-reference a catalog of active giant binaries (RS CVns) in the field with Gaia EDR3. Using the Gaia photometry and parallaxes, we precisely position the RS CVns in a CMD. We identify stars that fall below a 14 Gyr, metal-rich isochrone as candidate field SSGs. Out of a sample of 1723 RS CVn, we find 448 SSG candidates, a dramatic expansion from the 65 SSGs previously known. Most SSGs have rotation periods of 2–20 days, with the highest SSG fraction found among RS CVn with the shortest periods. The ubiquity of SSGs among this population indicates that SSGs are a normal phase in evolution for RS CVn-type systems, not rare by-products of dynamical encounters found only in dense star clusters as some have suggested. We present our catalog of 1723 active giants, including Gaia photometry and astrometry, and rotation periods from the Transiting Exoplanet Survey Satellite and International Variable Star Index (VSX). This catalog can serve as an important sample to study the impacts of magnetic fields in evolved stars.

 
more » « less
Award ID(s):
1801937
NSF-PAR ID:
10364388
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 222
Size(s):
["Article No. 222"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Our understanding of the impact of magnetic activity on stellar evolution continues to unfold. This impact is seen in sub-subgiant stars, defined to be stars that sit below the subgiant branch and red of the main sequence in a cluster color–magnitude diagram. Here we focus on S1063, a prototypical sub-subgiant in open cluster M67. We use a novel technique combining a two-temperature spectral decomposition and light-curve analysis to constrain starspot properties over a multiyear time frame. Using a high-resolution near-infrared IGRINS spectrum and photometric data from K2 and ASAS-SN, we find a projected spot filling factor of 32% ± 7% with a spot temperature of 4000 ± 200 K. This value anchors the variability seen in the light curve, indicating the spot filling factor of S1063 ranged from 20% to 45% over a four-year time period with an average spot filling factor of 30%. These values are generally lower than those determined from photometric model comparisons but still indicate that S1063, and likely other sub-subgiants, are magnetically active spotted stars. We find observational and theoretical comparisons of spotted stars are nuanced due to the projected spot coverage impacting estimates of the surface-averaged effective temperature. The starspot properties found here are similar to those found in RS CVn systems, supporting classifying sub-subgiants as another type of active giant star binary system. This technique opens the possibility of characterizing the surface conditions of many more spotted stars than previous methods, allowing for larger future studies to test theoretical models of magnetically active stars.

     
    more » « less
  2. Abstract We created the APOGEE-GALEX-Gaia catalog to study white dwarf (WD) binaries. This database aims to create a minimally biased sample of WD binary systems identified from a combination of GALEX, Gaia, and APOGEE data to increase the number of WD binaries with orbital parameters and chemical compositions. We identify 3414 sources as WD binary candidates, with nondegenerate companions of spectral types between F and M, including main-sequence stars, main-sequence binaries, subgiants, sub-subgiants, red giants, and red clump stars. Among our findings are (a) a total of 1806 systems having inferred WD radii R < 25 R ⊕ , which constitute a more reliable group of WD binary candidates within the main sample; (b) a difference in the metallicity distribution function between WD binary candidates and the control sample of most luminous giants ( M H < −3.0); (c) the existence of a population of sub-subgiants with WD companions; (d) evidence for shorter periods in binaries that contain WDs compared to those that do not, as shown by the cumulative distributions of APOGEE radial velocity shifts; (e) evidence for systemic orbital evolution in a sample of 252 WD binaries with orbital periods, based on differences in the period distribution between systems with red clump, main-sequence binary, and sub-subgiant companions and systems with main-sequence or red giant companions; and (f) evidence for chemical enrichment during common envelope (CE) evolution, shown by lower metallicities in wide WD binary candidates ( P > 100 days) compared to post-CE ( P < 100 days) WD binary candidates. 
    more » « less
  3. Aims: We present a detailed long-term study of the single M6 III giant RZ Ari to obtain direct and simultaneous measurements of the magnetic field, activity indicators, and radial velocity in order to infer the origin of its activity. We study its magnetic activity in the context of stellar evolution, and for this purpose, we also refined its evolutionary status and Li abundance. In general, for the M giants, little is known about the properties of the magnetic activity and its causes. RZ Ari possess the strongest surface magnetic field of the known Zeeman-detected M giants and is bright enough to allow a deep study of its surface magnetic structure. The results are expected to shed light on the activity mechanism in these stars.

    Methods: We used the spectropolarimeter Narval at the Télescope Bernard Lyot (Observatoire du Pic du Midi, France) to obtain a series of Stokes I and V profiles for RZ Ari. Using the least-squares deconvolution technique, we were able to detect the Zeeman signature of the magnetic field. We measured its longitudinal component by means of the averaged Stokes I and V profiles. In addition, we also applied Zeeman-Doppler imaging (ZDI) to search for the rotation period of the star, and we constructed a tentative magnetic map. It is the first magnetic map for a star that evolved at the tip of red giant branch (RGB) or even on the asymptotic giant branch (AGB). The spectra also allowed us to monitor chromospheric emission lines, which are well-known indicators of stellar magnetic activity. From the observations obtained between September 2010 and August 2019, we studied the variability of the magnetic field of RZ Ari. We also redetermined the initial mass and evolutionary status of this star based on current stellar evolutionary tracks and on the angular diameter measured from CHARA interferometry. Results: Our results point to an initial mass of 1.5Mso that this giant is more likely an early-AGB star, but a lotaction at the tip of the RGB is not completely excluded. With a v sin i of 6.0 ±0.5 km s−1, the upper limit for the rotation period is found to be 909 days. On the basis of our dataset and AAVSO photometric data, we determined periods longer than 1100 days for the magnetic field and photometric variability, and 704 days for the spectral line activity indicators. The rotation period determined on the basis of the Stokes V profiles variability is 530 days. A similar period of 544 days is also found for the photometric data. When we take this rotation period and the convective turnover time into account, an effective action of an α-ω type dynamo seems to be unlikely, but other types of dynamo could be operating there. The star appears to lie outside the two magnetic strips on the giant branches, where the α-ω-type dynamo is expected to operate effectively, and it also has a much higher lithium content than the evolutionary model predicts. These facts suggest that a planet engulfment could speed up its rotation and trigger dynamo-driven magnetic activity. On the other hand, the period of more than 1100 days cannot be explained by rotational modulation and could be explained by the lifetime of large convective structures. The absence of linear polarization at the time the magnetic field was detected, however, suggests that a local dynamo probably does not contribute significantly to the magnetic field, at least for that time interval. 
    more » « less
  4. Most previous efforts to calibrate how rotation and magnetic activity depend on stellar age and mass have relied on observations of clusters, where isochrones from stellar evolution models are used to determine the properties of the ensemble. Asteroseismology employs similar models to measure the properties of an individual star by matching its normal modes of oscillation, yielding the stellar age and mass with high precision. We use 27 days of photometry from the {\it Transiting Exoplanet Survey Satellite} (TESS) to characterize solar-like oscillations in the G8 subgiant of the 94~Aqr triple system. The resulting stellar properties, when combined with a reanalysis of 35 years of activity measurements from the Mount Wilson HK project, allow us to probe the evolution of rotation and magnetic activity in the system. The asteroseismic age of the subgiant agrees with a stellar isochrone fit, but the rotation period is much shorter than expected from standard models of angular momentum evolution. We conclude that weakened magnetic braking may be needed to reproduce the stellar properties, and that evolved subgiants in the hydrogen shell-burning phase can reinvigorate large-scale dynamo action and briefly sustain magnetic activity cycles before ascending the red giant branch. 
    more » « less
  5. ABSTRACT

    We analyse two binary systems containing giant stars, V723 Mon (‘the Unicorn’) and 2M04123153+6738486 (‘the Giraffe’). Both giants orbit more massive but less luminous companions, previously proposed to be mass-gap black holes. Spectral disentangling reveals luminous companions with star-like spectra in both systems. Joint modelling of the spectra, light curves, and spectral energy distributions robustly constrains the masses, temperatures, and radii of both components: the primaries are luminous, cool giants ($T_{\rm eff,\, giant} = 3800$ and $4000\, \rm K$, $R_{\rm giant}= 22.5$ and $25\, {\rm R}_{\odot }$) with exceptionally low masses ($M_{\rm giant} \approx 0.4\, {\rm M}_{\odot }$) that likely fill their Roche lobes. The secondaries are only slightly warmer subgiants ($T_{\rm eff,\, 2} = 5800$ and $5150\, \rm K$, $R_2= 8.3$ and $9\, {\rm R}_{\odot }$) and thus are consistent with observed UV limits that would rule out main-sequence stars with similar masses ($M_2 \approx 2.8$ and ${\approx}1.8\, {\rm M}_{\odot }$). In the Unicorn, rapid rotation blurs the spectral lines of the subgiant, making it challenging to detect even at wavelengths where it dominates the total light. Both giants have surface abundances indicative of CNO processing and subsequent envelope stripping. The properties of both systems can be reproduced by binary evolution models in which a $1{-}2\, {\rm M}_{\odot }$ primary is stripped by a companion as it ascends the giant branch. The fact that the companions are also evolved implies either that the initial mass ratio was very near unity, or that the companions are temporarily inflated due to rapid accretion. The Unicorn and Giraffe offer a window into into a rarely observed phase of binary evolution preceding the formation of wide-orbit helium white dwarfs, and eventually, compact binaries containing two helium white dwarfs.

     
    more » « less