skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seven classes of rotational variables from a study of 50 000 spotted stars with ASAS-SN, Gaia , and APOGEE
ABSTRACT We examine the properties of ∼50 000 rotational variables from the ASAS-SN survey using distances, stellar properties, and probes of binarity from Gaia DR3 and the SDSS APOGEE survey. They have higher amplitudes and span a broader period range than previously studied Kepler rotators. We find they divide into three groups of main sequence stars (MS1, MS2s, MS2b) and four of giants (G1/3, G2, G4s, and G4b). MS1 stars are slowly rotating (10–30 d), likely single stars with a limited range of temperatures. MS2s stars are more rapidly rotating (days) single stars spanning the lower main sequence up to the Kraft break. There is a clear period gap (or minimum) between MS1 and MS2s, similar to that seen for lower temperatures in the Kepler samples. MS2b stars are tidally locked binaries with periods of days. G1/3 stars are heavily spotted, tidally locked RS CVn stars with periods of 10s of days. G2 stars are less luminous, heavily spotted, tidally locked sub-subgiants with periods of ∼10 d. G4s stars have intermediate luminosities to G1/3 and G2, slow rotation periods (approaching 100 d), and are almost certainly all merger remnants. G4b stars have similar rotation periods and luminosities to G4s, but consist of sub-synchronously rotating binaries. We see no difference in indicators for the presence of very wide binary companions between any of these groups and control samples of photometric twin stars built for each group.  more » « less
Award ID(s):
2307385 1908570
PAR ID:
10477333
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 5588-5602
Size(s):
p. 5588-5602
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gyrochronology is the empirical relation between rotation and age. NASA's Transiting Exoplanet Survey Satellite (TESS), Kepler, and K2 missions have observed thousands of wide main sequence binaries. Since components of a binary are coeval, their rotation periods should be consistent with gyrochronology models. However, the usefulness of gyrochronology depends upon reliable rotation periods. We explore the reliability of rotation period determinations for a sample of wide binary components from the TESS cycle 3. Wide binaries with the most reliable rotation period determinations provide a strong basis for testing whether the gyrochronology empirical relation derived from open clusters is also valid for field stars. 
    more » « less
  2. Abstract The intermediate period gap, discovered by Kepler, is an observed dearth of stellar rotation periods in the temperature–period diagram at ∼20 days for G dwarfs and up to ∼30 days for early-M dwarfs. However, because Kepler mainly targeted solar-like stars, there is a lack of measured periods for M dwarfs, especially those at the fully convective limit. Therefore it is unclear if the intermediate period gap exists for mid- to late-M dwarfs. Here, we present a period catalog containing 40,553 rotation periods (9535 periods >10 days), measured using the Zwicky Transient Facility (ZTF). To measure these periods, we developed a simple pipeline that improves directly on the ZTF archival light curves and reduces the photometric scatter by 26%, on average. This new catalog spans a range of stellar temperatures that connect samples from Kepler with MEarth, a ground-based time-domain survey of bright M dwarfs, and reveals that the intermediate period gap closes at the theoretically predicted location of the fully convective boundary ( G BP − G RP ∼ 2.45 mag). This result supports the hypothesis that the gap is caused by core–envelope interactions. Using gyro-kinematic ages, we also find a potential rapid spin-down of stars across this period gap. 
    more » « less
  3. Abstract Tropical cyclones occur over the Earth’s tropical oceans, with characteristic genesis regions and tracks tied to the warm ocean surface that provide energy to sustain these storms. The study of tropical cyclogenesis and evolution on Earth has led to the development of environmental favorability metrics that predict the strength of potential storms from the local background climate state. Simulations of the gamut of transiting terrestrial exoplanets orbiting late-type stars may offer a test of this Earth-based understanding of tropical cyclogenesis. Previous work has demonstrated that tropical cyclones are likely to form on tidally locked terrestrial exoplanets with intermediate rotation periods of ∼8–10 days. In this study, we test these expectations using ExoCAM simulations with both a sufficient horizontal resolution of 0.°47 × 0.°63 required to permit tropical cyclogenesis along with a thermodynamically active slab ocean. We conduct simulations of tidally locked and ocean-covered Earth-sized planets orbiting late-type M dwarf stars with varying rotation periods from 4–16 days in order to cross the predicted maximum in tropical cyclogenesis. We track tropical cyclones that form in each simulation and assess their location of maximum wind, evolution, and maximum wind speeds. We compare the resulting tropical cyclone locations and strengths to predictions based on environmental favorability metrics, finding good agreement between Earth-based metrics and our simulated storms with a local maximum in both tropical cyclone frequency and intensity at a rotation period of 8 days. Our results suggest that environmental favorability metrics used for tropical cyclones on Earth may also be applicable to temperate tidally locked Earth-sized rocky exoplanets with abundant surface liquid water. 
    more » « less
  4. Abstract Stellar spin down is a critical yet poorly understood component of stellar evolution. In particular, results from the Kepler Mission imply that mature age, solar-type stars have inefficient magnetic braking, resulting in a stalled spin-down rate. However, a large number of precise asteroseismic ages are needed for mature (≥3 Gyr) stars in order to probe the regime where traditional and stalled spin-down models differ. In this paper, we present a new asteroseismic benchmark star for gyrochronology discovered using reprocessed Kepler short cadence data. KIC 11029516 (Papayu) is a bright (Kp= 9.6 mag) solar-type star with a well-measured rotation period (21.1 ± 0.8 days) from spot modulation using 4 yr of Kepler long-cadence data. We combine asteroseismology and spectroscopy to obtainTeff= 5888 ± 100 K, [Fe/H] = 0.30 ± 0.06 dex,M= 1.24 ± 0.05M,R= 1.34 ± 0.02R, and age of 4.0 ± 0.4 Gyr, making Papayu one of the most similar stars to the Sun in terms of temperature and radius with an asteroseismic age and a rotation period measured from spot modulation. We find that Papayu sits at the transition of where traditional and weakened spin-down models diverge. A comparison with stars of similar zero-age main-sequence temperatures supports previous findings that weakened spin-down models are required to explain the ages and rotation periods of old solar-type stars. 
    more » « less
  5. Abstract Gyrochronology, the field of age dating stars using mainly their rotation periods and masses, is ideal for inferring the ages of individual main-sequence stars. However, due to the lack of physical understanding of the complex magnetic fields in stars, gyrochronology relies heavily on empirical calibrations that require consistent and reliable stellar age measurements across a wide range of periods and masses. In this paper, we obtain a sample of consistent ages using the gyro-kinematic age-dating method, a technique to calculate the kinematics ages of stars. Using a Gaussian process model conditioned on ages from this sample (∼1–14 Gyr) and known clusters (0.67–3.8 Gyr), we calibrate the first empirical gyrochronology relation that is capable of inferring ages for single, main-sequence stars between 0.67 and 14 Gyr. Cross-validating and testing results suggest our model can infer cluster and asteroseismic ages with an average uncertainty of just over 1 Gyr, and the inferred ages for wide binaries agree within 0.83 Gyr. With this model, we obtain gyrochronology ages for ∼100,000 stars within 1.5 kpc of the Sun with period measurements from Kepler and Zwicky Transient Facility and 384 unique planet host stars. A simple code is provided to infer gyrochronology ages of stars with temperature and period measurements. 
    more » « less