The observed diversity in Type Ia supernovae (SNe Ia) – the thermonuclear explosions of carbon–oxygen white dwarf stars used as cosmological standard candles – is currently met with a variety of explosion models and progenitor scenarios. To help improve our understanding of whether and how often different models contribute to the occurrence of SNe Ia and their assorted properties, we present a comprehensive analysis of seven nearby SNe Ia. We obtained one to two epochs of optical spectra with Gemini Observatory during the nebular phase (>200 d past peak) for each of these events, all of which had time series of photometry and spectroscopy at early times (the first ∼8 weeks after explosion). We use the combination of early- and late-time observations to assess the predictions of various models for the explosion (e.g. double-detonation, off-centre detonation, stellar collisions), progenitor star (e.g. ejecta mass, metallicity), and binary companion (e.g. another white dwarf or a non-degenerate star). Overall, we find general consistency in our observations with spherically symmetric models for SN Ia explosions, and with scenarios in which the binary companion is another degenerate star. We also present an in-depth analysis of SN 2017fzw, a member of the subgroup of SNe Ia which appear to be transitional between the subluminous ‘91bg-like’ events and normal SNe Ia, and for which nebular-phase spectra are rare.
Calcium-rich (Ca-rich) transients are a new class of supernovae (SNe) that are known for their comparatively rapid evolution, modest peak luminosities, and strong nebular calcium emission lines. Currently, the progenitor systems of Ca-rich transients remain unknown. Although they exhibit spectroscopic properties not unlike core-collapse Type Ib/c SNe, nearly half are found in the outskirts of their host galaxies, which are predominantly elliptical, suggesting a closer connection to the older stellar populations of SNe Ia. In this paper, we present a compilation of publicly available multiwavelength observations of all known and/or suspected host galaxies of Ca-rich transients ranging from far-UV to IR, and use these data to characterize their stellar populations with
- PAR ID:
- 10364396
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 927
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 199
- Size(s):
- Article No. 199
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Type Ia supernovae (SNe Ia) are runaway thermonuclear explosions in white dwarfs that result in the disruption of the white dwarf star, and possibly its nearby stellar companion. SNe Ia occur over an immense range of stellar population age and host galaxy environments, and play a critical role in the nucleosynthesis of intermediate-mass and iron-group elements, primarily the production of nickel, iron, cobalt, chromium, and manganese. Though the nature of their progenitors is still not well-understood, SNe Ia are unique among stellar explosions in that the majority of them exhibit a systematic lightcurve relation: more luminous supernovae dim more slowly over time than less luminous supernovae in optical light (intrinsically brighter SNe Ia have broader lightcurves). This feature, unique to SNe Ia, is rather remarkable and allows their peak luminosities to be determined with fairly high accuracy out to cosmological distances via measurement of their lightcurve decline. Further, studying SNe Ia gives us important insights into binary star evolution physics, since it is widely agreed that the progenitors of SNe Ia are binary (possibly multiple) star systems. In this review, we give a current update on the different proposed Type Ia supernova progenitors, including descriptions of possible binary star configurations, and their explosion mechanisms, from a theoretical perspective. We additionally give a brief overview of the historical (focussing on the more recent) observational work that has helped the astronomical community to understand the nature of the most important distance indicators in cosmology.
-
Abstract Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star 1 , but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds 2 or binary interaction 3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star 4,5 . Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs. 6,7 ). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems.more » « less
-
Abstract The fate of stars in the zero-age main-sequence (ZAMS) range ≈8–12
M ⊙is unclear. They could evolve to form white dwarfs or explode as electron-capture supernovae (SNe) or iron core-collapse SNe (CCSNe). Even though the initial mass function indicates that this mass range should account for over 40% of all CCSN progenitors, few have been observationally confirmed, likely due to the faintness and rapid evolution of some of these transients. In this paper, we present a sample of nine Ca-rich/O-poor Type IIb SNe detected by the Zwicky Transient Facility with progenitors likely in this mass range. These sources have a [Caii ]λ λ 7291, 7324/[Oi ]λ λ 6300, 6364 flux ratio of ≳2 in their nebular spectra. Comparing the measured [Oi ] luminosity (≲1039erg s−1) and derived oxygen mass (≈0.01M ⊙) with theoretical models, we infer that the progenitor ZAMS mass for these explosions is less than 12M ⊙. The ejecta properties (M ej≲ 1M ⊙andE kin∼ 1050erg) are also consistent. The low ejecta mass of these sources indicates a class of strongly-stripped SNe that is a transition between the regular stripped-envelope SNe and ultra-stripped SNe. The progenitor could be stripped by a main-sequence companion and result in the formation of a neutron star−main sequence binary. Such binaries have been suggested to be progenitors of neutron star−white dwarf systems that could merge within a Hubble time and be detectable with LISA. -
ABSTRACT Type Iax supernovae (SNe Iax) are the most common class of peculiar SNe. While they are thought to be thermonuclear white-dwarf (WD) SNe, SNe Iax are observationally similar to, but distinct from SNe Ia. Unlike SNe Ia, where roughly 30 per cent occur in early-type galaxies, only one SN Iax has been discovered in an early-type galaxy, suggesting a relatively short delay time and a distinct progenitor system. Furthermore, one SN Iax progenitor system has been detected in pre-explosion images with its properties consistent with either of two models: a short-lived (<100 Myr) progenitor system consisting of a WD primary and a He-star companion, or a singular Wolf–Rayet progenitor star. Using deep Hubble Space Telescope images of nine nearby SN Iax host galaxies, we measure the properties of stars within 200 pc of the SN position. The ages of local stars, some of which formed with the SN progenitor system, can constrain the time between star formation and SN, known as the delay time. We compare the local stellar properties to synthetic photometry of single-stellar populations, fitting to a range of possible delay times for each SN. With this sample, we uniquely constrain the delay-time distribution for SNe Iax, with a median and 1σ confidence interval delay time of $63_{- 15}^{+ 58} \times 10^{6}$ yr. The measured delay-time distribution provides an excellent constraint on the progenitor system for the class, indicating a preference for a WD progenitor system over a Wolf–Rayet progenitor star.more » « less