skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Genome wide study of cysteine rich receptor like proteins in Gossypium sp.
Abstract

Cysteine-rich receptor-like-kinases (CRKs), a transmembrane subfamily of receptor-like kinase, play crucial roles in plant adaptation. As such cotton is the major source of fiber for the textile industry, but environmental stresses are limiting its growth and production. Here, we have performed a deep computational analysis ofCRKsin fiveGossypiumspecies, includingG. arboreum(60 genes), G. raimondii(74 genes), G. herbaceum(65 genes), G. hirsutum(118 genes), andG. barbadense(120 genes). All identified CRKs were classified into 11 major classes and 43 subclasses with the finding of several novel CRK-associated domains includingALMT, FUSC_2, Cript, FYVE,andPkinase. Of these,DUF26_DUF26_Pkinase_Tyrwas common and had elevated expression under different biotic and abiotic stresses. Moreover, the 35 land plants comparison identified several newCRKsdomain-architectures. Likewise, several SNPs and InDels were observed in CLCuD resistantG. hirsutum. The miRNA target side prediction and their expression profiling in different tissues predictedmiR172as a major CRK regulating miR. The expression profiling ofCRKsidentified multiple clusters with co-expression under certain stress conditions. The expression analysis under CLCuD highlighted the role ofGhCRK057, GhCRK059, GhCRK058, and GhCRK081in resistant accession. Overall, these results provided primary data for future potential functional analysis as well as a reference study for other agronomically important crops.

 
more » « less
Award ID(s):
2038872
PAR ID:
10364403
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nucleotide-binding site (NBS) domain genes are one of the superfamily of resistance genes involved in plant responses to pathogens. The current study identified 12,820 NBS-domain-containing genes across 34 species covering from mosses to monocots and dicots. These identified genes are classified into 168 classes with several novel domain architecture patterns encompassing significant diversity among plant species. Several classical (NBS, NBS-LRR, TIR-NBS, TIR-NBS-LRR, etc.) and species-specific structural patterns (TIR-NBS-TIR-Cupin_1-Cupin_1, TIR-NBS-Prenyltransf, Sugar_tr-NBSetc.) were discovered. We observed 603 orthogroups (OGs) with some core (most common orthogroups; OG0, OG1, OG2,etc.) and unique (highly specific to species; OG80, OG82,etc.) OGs with tandem duplications. The expression profiling presented the putative upregulation of OG2, OG6,and OG15in different tissues under various biotic and abiotic stresses in susceptible and tolerant plants to cotton leaf curl disease (CLCuD). The genetic variation between susceptible (Coker 312) and tolerant (Mac7)Gossypium hirsutumaccessions identified several unique variants inNBSgenes of Mac7 (6583 variants) and Coker312 (5173 variants). The protein–ligand and proteins-protein interaction showed a strong interaction of some putativeNBSproteins with ADP/ATP and different core proteins of the cotton leaf curl disease virus. The silencing ofGaNBS(OG2) in resistant cotton through virus-induced gene silencing (VIGS) demonstrated its putative role in virus tittering. The presented study will be further helpful in understanding the plant adaptation mechanism.

     
    more » « less
  2. Sareen, Sindhu (Ed.)
    Potassium (K+) is the most abundant cation that plays a crucial role in various cellular processes in plants. Plants have developed an efficient mechanism for the acquisition of K+ when grown in K+ deficient or saline soils. A total of 47 K+ transport gene homologs (27 HAKs, 4 HKTs, 2 KEAs, 9 AKTs, 2 KATs, 2 TPCs, and 1 VDPC) have been identified in Sorghum bicolor. Of 47 homologs, 33 were identified as K+ transporters and the remaining 14 as K+ channels. Chromosome 2 has been found as the hotspot of K+ transporters with 9 genes. Phylogenetic analysis revealed the conservation of sorghum K+ transport genes akin to Oryza sativa. Analysis of regulatory elements indicates the key roles that K+ transport genes play under different biotic and abiotic stress conditions. Digital expression data of different developmental stages disclosed that expressions were higher in milk, flowering, and tillering stages. Expression levels of the genes SbHAK27 and SbKEA2 were higher during milk, SbHAK17, SbHAK11, SbHAK18, and SbHAK7 during flowering, SbHAK18, SbHAK10, and 23 other gene expressions were elevated during tillering inferring the important role that K+ transport genes play during plant growth and development. Differential transcript expression was observed in different tissues like root, stem, and leaf under abiotic stresses such as salt, drought, heat, and cold stresses. Collectively, the in-depth genome-wide analysis and differential transcript profiling of K+ transport genes elucidate their role in ion homeostasis and stress tolerance mechanisms. 
    more » « less
  3. Phosphoenolpyruvate carboxylase (PEPC) is an important enzyme in plants, which regulates carbon flow through the TCA cycle and controls protein and oil biosynthesis. Although it is important, there is little research on PEPC in cotton, the most important fiber crop in the world. In this study, a total of 125 PEPCs were identified in 15 Gossypium genomes. All PEPC genes in cotton are divided into six groups and each group generally contains one PEPC member in each diploid cotton and two in each tetraploid cotton. This suggests that PEPC genes already existed in cotton before their divergence. There are additional PEPC sub-groups in other plant species, suggesting the different evolution and natural selection during different plant evolution. PEPC genes were independently evolved in each cotton sub-genome. During cotton domestication and evolution, certain PEPC genes were lost and new ones were born to face the new environmental changes and human being needs. The comprehensive analysis of collinearity events and selection pressure shows that genome-wide duplication and fragment duplication are the main methods for the expansion of the PEPC family, and they continue to undergo purification selection during the evolutionary process. PEPC genes were widely expressed with temporal and spatial patterns. The expression patterns of PEPC genes were similar in G. hirsutum and G. barbadense with a slight difference. PEPC2A and 2D were highly expressed in cotton reproductive tissues, including ovule and fiber at all tested developmental stages in both cultivated cottons. However, PEPC1A and 1D were dominantly expressed in vegetative tissues. Abiotic stress also induced the aberrant expression of PEPC genes, in which PEPC1 was induced by both chilling and salinity stresses while PEPC5 was induced by chilling and drought stresses. Each pair (A and D) of PEPC genes showed the similar response to cotton development and different abiotic stress, suggesting the similar function of these PEPCs no matter their origination from A or D sub-genome. However, some divergence was also observed among their origination, such as PEPC5D was induced but PEPC5A was inhibited in G. barbadense during drought treatment, suggesting that a different organized PEPC gene may evolve different functions during cotton evolution. During cotton polyploidization, the homologues genes may refunction and play different roles in different situations.

     
    more » « less
  4. Allopolyploidization, resulting in divergent genomes in the same cell, is believed to trigger a “genome shock”, leading to broad genetic and epigenetic changes. However, little is understood about chromatin and gene-expression dynamics as underlying driving forces during allopolyploidization. Here, we examined the genome-wide DNase I-hypersensitive site (DHS) and its variations in domesticated allotetraploid cotton (Gossypium hirsutumandGossypium barbadense, AADD) and its extant AA (Gossypium arboreum) and DD (Gossypium raimondii) progenitors. We observed distinct DHS distributions betweenG. arboreumandG. raimondii. In contrast, the DHSs of the two subgenomes ofG. hirsutumandG. barbadenseshowed a convergent distribution. This convergent distribution of DHS was also present in the wild allotetraploidsGossypium darwiniiandG. hirsutumvar.yucatanense, but absent from a resynthesized hybrid ofG. arboreumandG. raimondii, suggesting that it may be a common feature in polyploids, and not a consequence of domestication after polyploidization. We revealed that putativecis-regulatory elements (CREs) derived from polyploidization-related DHSs were dominated by several families, including Dof, ERF48, and BPC1. Strikingly, 56.6% of polyploidization-related DHSs were derived from transposable elements (TEs). Moreover, we observed positive correlations between DHS accessibility and the histone marks H3K4me3, H3K27me3, H3K36me3, H3K27ac, and H3K9ac, indicating that coordinated interplay among histone modifications, TEs, and CREs drives the DHS landscape dynamics under polyploidization. Collectively, these findings advance our understanding of the regulatory architecture in plants and underscore the complexity of regulome evolution during polyploidization.

     
    more » « less
  5. Abstract

    Zinc finger (Zf)-BED proteins are a novel superfamily of transcription factors that controls numerous activities in plants including growth, development, and cellular responses to biotic and abiotic stresses. Despite their important roles in gene regulation, little is known about the specific functions of Zf-BEDs in land plants. The current study identified a total of 750 Zf-BED-encoding genes in 35 land plant species including mosses, bryophytes, lycophytes, gymnosperms, and angiosperms. The gene family size was somewhat proportional to genome size. All identified genes were categorized into 22 classes based on their specific domain architectures. Of these, class I (Zf-BED_DUF-domain_Dimer_Tnp_hAT) was the most common in the majority of the land plants. However, some classes were family-specific, while the others were species-specific, demonstrating diversity at different classification levels. In addition, several novel functional domains were also predicated including WRKY and nucleotide-binding site (NBS). Comparative genomics, transcriptomics, and proteomics provided insights into the evolutionary history, duplication, divergence, gene gain and loss, species relationship, expression profiling, and structural diversity of Zf-BEDs in land plants. The comprehensive study of Zf-BEDs inGossypiumsp., (cotton) also demonstrated a clear footprint of polyploidization. Overall, this comprehensive evolutionary study of Zf-BEDs in land plants highlighted significant diversity among plant species.

     
    more » « less