Abstract Zinc finger (Zf)-BED proteins are a novel superfamily of transcription factors that controls numerous activities in plants including growth, development, and cellular responses to biotic and abiotic stresses. Despite their important roles in gene regulation, little is known about the specific functions of Zf-BEDs in land plants. The current study identified a total of 750 Zf-BED-encoding genes in 35 land plant species including mosses, bryophytes, lycophytes, gymnosperms, and angiosperms. The gene family size was somewhat proportional to genome size. All identified genes were categorized into 22 classes based on their specific domain architectures. Of these, class I (Zf-BED_DUF-domain_Dimer_Tnp_hAT) was the most common in the majority of the land plants. However, some classes were family-specific, while the others were species-specific, demonstrating diversity at different classification levels. In addition, several novel functional domains were also predicated including WRKY and nucleotide-binding site (NBS). Comparative genomics, transcriptomics, and proteomics provided insights into the evolutionary history, duplication, divergence, gene gain and loss, species relationship, expression profiling, and structural diversity of Zf-BEDs in land plants. The comprehensive study of Zf-BEDs inGossypiumsp., (cotton) also demonstrated a clear footprint of polyploidization. Overall, this comprehensive evolutionary study of Zf-BEDs in land plants highlighted significant diversity among plant species.
more »
« less
This content will become publicly available on December 1, 2025
Comparative analysis, diversification, and functional validation of plant nucleotide-binding site domain genes
Abstract Nucleotide-binding site (NBS) domain genes are one of the superfamily of resistance genes involved in plant responses to pathogens. The current study identified 12,820 NBS-domain-containing genes across 34 species covering from mosses to monocots and dicots. These identified genes are classified into 168 classes with several novel domain architecture patterns encompassing significant diversity among plant species. Several classical (NBS, NBS-LRR, TIR-NBS, TIR-NBS-LRR, etc.) and species-specific structural patterns (TIR-NBS-TIR-Cupin_1-Cupin_1, TIR-NBS-Prenyltransf, Sugar_tr-NBSetc.) were discovered. We observed 603 orthogroups (OGs) with some core (most common orthogroups; OG0, OG1, OG2,etc.) and unique (highly specific to species; OG80, OG82,etc.) OGs with tandem duplications. The expression profiling presented the putative upregulation of OG2, OG6,and OG15in different tissues under various biotic and abiotic stresses in susceptible and tolerant plants to cotton leaf curl disease (CLCuD). The genetic variation between susceptible (Coker 312) and tolerant (Mac7)Gossypium hirsutumaccessions identified several unique variants inNBSgenes of Mac7 (6583 variants) and Coker312 (5173 variants). The protein–ligand and proteins-protein interaction showed a strong interaction of some putativeNBSproteins with ADP/ATP and different core proteins of the cotton leaf curl disease virus. The silencing ofGaNBS(OG2) in resistant cotton through virus-induced gene silencing (VIGS) demonstrated its putative role in virus tittering. The presented study will be further helpful in understanding the plant adaptation mechanism.
more »
« less
- PAR ID:
- 10519639
- Publisher / Repository:
- Scientific Reports
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cotton is an important natural fiber crop. The RF2 gene family is a member of the bZIP transcription factor superfamily, which plays an important role in plant resistance to environmental stresses. In this paper, the RF2 gene family of four cotton species was analyzed genome-wide, and the key gene RF2-32 was cloned for functional verification. A total of 113 RF2 genes were identified in the four cotton species, and the RF2 family was relatively conserved during the evolution of cotton. Chromosome mapping and collinear analysis indicated that fragment replication was the main expansion mode of RF2 gene family during evolution. Cis-element analysis showed that there were many elements related to light response, hormone response and abiotic stress response in the promoters of RF2 genes. The transcriptome and qRT-PCR analysis of RF2 family genes in upland cotton showed that RF2 family genes responded to salt stress and drought stress. GhRF2-32 protein was localized in the cell nucleus. Silencing the GhRF2-32 gene showed less leaf wilting and increased total antioxidant capacity under drought and salt stress, decreased malondialdehyde content and increased drought and salt tolerance. This study revealed the evolutionary and functional diversity of the RF2 gene family, which laid a foundation for the further study of stress-resistant genes in cotton.more » « less
-
Abstract Polyunsaturated N-acylethanolamines (NAEs) can be hydrolyzed by fatty acid amide hydrolase (FAAH) or oxidized by lipoxygenase (LOX). In Arabidopsis (Arabidopsis thaliana), the 9-LOX product of linoleoylethanolamide, namely, 9-hydroxy linoleoylethanolamide (9-NAE-HOD), is reported to negatively regulate seedling development during secondary dormancy. In upland cotton (Gossypium hirsutum L.), six putative FAAH genes (from two diverged groups) and six potential 9-LOX genes are present; however, their involvement in 9-NAE-HOD metabolism and its regulation of seedling development remain unexplored. Here, we report that in cotton plants, two specific FAAH isoforms (GhFAAH Ib and GhFAAH IIb) are needed for hydrolysis of certain endogenous NAEs. Virus-induced gene silencing (VIGS) of either or both FAAHs led to reduced seedling growth and this coincided with reduced amidohydrolase activities and elevated quantities of endogenous 9-NAE-HOD. Transcripts of GhLOX21 were consistently elevated in FAAH-silenced tissues, and co-silencing of GhLOX21 and GhFAAH (Ib and/or IIb) led to reversal of seedling growth to normal levels (comparable with no silencing). This was concomitant with reductions in the levels of 9-NAE-HOD, but not of 13-NAE-HOD. Pharmacological experiments corroborated the genetic and biochemical evidence, demonstrating that direct application of 9-NAE-HOD, but not 13-NAE-HOD or their corresponding free fatty acid oxylipins, inhibited the growth of cotton seedlings. Additionally, VIGS of GhLOX21 in cotton lines overexpressing AtFAAH exhibited enhanced growth and no detectable 9-NAE-HOD. Altogether, we conclude that the growth of cotton seedlings involves fine-tuning of 9-NAE-HOD levels via FAAH-mediated hydrolysis and LOX-mediated production, expanding the mechanistic understanding of plant growth modulation by NAE oxylipins to a perennial crop species.more » « less
-
Abstract BackgroundSoybean gene functions cannot be easily interrogated through transgenic disruption (knock-out) of genes-of-interest, or transgenic overexpression of proteins-of-interest, because soybean transformation is time-consuming and technically challenging. An attractive alternative is to administer transient gene silencing or overexpression with a plant virus-based vector. However, existing virus-induced gene silencing (VIGS) and/or overexpression vectors suitable for soybean have various drawbacks that hinder their widespread adoption. ResultsWe describe the development of a new vector based on cowpea severe mosaic virus (CPSMV), a plus-strand RNA virus with its genome divided into two RNA segments, RNA1 and RNA2. This vector, designated FZ, incorporates a cloning site in the RNA2 cDNA, permitting insertion of nonviral sequences. When paired with an optimized RNA1 construct, FZ readily infects bothNicotiana benthamianaand soybean. As a result, FZ constructs destined for soybean can be first delivered toN. benthamianain order to propagate the modified viruses to high titers. FZ-based silencing constructs induced robust silencing of phytoene desaturase genes inN. benthamiana, multiple soybean accessions, and cowpea. Meanwhile, FZ supported systemic expression of fluorescent proteins mNeonGreen and mCherry inN. benthamianaand soybean. Finally, FZ-mediated expression of the Arabidopsis transcription factor MYB75 causedN. benthamianato bear brown leaves and purple, twisted flowers, indicating that MYB75 retained the function of activating anthocyanin synthesis pathways in a different plant. ConclusionsThe new CPSMV-derived FZ vector provides a convenient and versatile soybean functional genomics tool that is expected to accelerate the characterization of soybean genes controlling crucial productivity traits.more » « less
-
Abstract Plants contain many nucleotide-binding leucine-rich repeat (NLR) proteins that are postulated to function as intracellular immune receptors but do not yet have an identified function during plant-pathogen interactions. SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1) one such NLR protein of the Toll-interleukin 1 receptor (TIR) type despite its well characterized gain-of-function activity and its involvement in autoimmunity in Arabidopsis (Arabidopsis thaliana). Here, we investigated the role of SNC1 in natural plant-pathogen interactions and genetically tested the importance of the enzymatic activities of its TIR domain for its function. The SNC1 loss-of-function mutants were more susceptible to avirulent bacterial pathogen strains of Pseudomonas syringae containing specific effectors, especially under constant light growth condition. The mutants also had reduced defense gene expression induction and hypersensitive responses upon infection by avirulent pathogens under constant light growth condition. In addition, genetic and biochemical studies supported that the TIR enzymatic activity of SNC1 is required for its gain-of-function activity. In sum, our study uncovers a role of SNC1 as an amplifier of plant defense responses during natural plant-pathogen interactions and indicates its use of enzymatic activity and intermolecular interactions for triggering autoimmune responses.more » « less
An official website of the United States government
