skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A 16 au Binary in the Class 0 Protostar L1157 MMS
Abstract We present Very Large Array observations toward the Class 0 protostar L1157 MMS at 6.8 and 9 mm with a resolution of ∼0.″04 (14 au). We detect two sources within L1157 MMS and interpret these sources as a binary protostar with a separation of ∼16 au. The material directly surrounding the binary system within the inner 50 au radius of the system has an estimated mass of 0.11M, calculated from the observed dust emission. We interpret the observed binary system in the context of previous observations of its flattened envelope structure, low rates of envelope rotation from 5000 to 200 au scales, and an ordered, poloidal magnetic field aligned with the outflow. Thus, L1157 MMS is a prototype system for magnetically regulated collapse, and the presence of a compact binary within L1157 MMS demonstrates that multiple star formation can still occur within envelopes that likely have dynamically important magnetic fields.  more » « less
Award ID(s):
1814762 2108794 1910364
PAR ID:
10364436
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 61
Size(s):
Article No. 61
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present 500 and 700 au resolution 1 and 3 mm Atacama Large Millimeter/submillimeter Array observations, respectively, of protostellar cores in protoclusters Sagittarius B2 (Sgr B2) North (N) and Main (M), parts of the most actively star-forming cloud in our Galaxy. Previous lower-resolution (5000 au) 3 mm observations of this region detected ∼150 sources inferred to be young stellar objects (YSOs) withM> 8M. With a 10-fold increase in resolution, we detect 371 sources at 3 mm and 218 sources in the smaller field of view at 1 mm. The sources seen at low resolution are observed to fragment into an average of two objects. About one-third of the observed sources fragment. Most of the sources we report are marginally resolved and are at least partially optically thick. We determine that the observed sources are most consistent with Stage 0/I YSOs, i.e., rotationally supported disks with an active protostar and an envelope, that are warmer than those observed in the solar neighborhood. We report source-counting-based inferred stellar mass and the star formation rate of the cloud: 2800Mand 0.0038Myr−1for Sgr B2 N and 6900Mand 0.0093Myr−1for Sgr B2 M, respectively. 
    more » « less
  2. Abstract We observed the high-mass protostellar core G335.579–0.272 ALMA1 at ∼200 au (0.″05) resolution with the Atacama Large Millimeter/submillimeter Array (ALMA) at 226 GHz (with a mass sensitivity of 5 σ = 0.2 M ⊙ at 10 K). We discovered that at least a binary system is forming inside this region, with an additional nearby bow-like structure (≲1000 au) that could add an additional member to the stellar system. These three sources are located at the center of the gravitational potential well of the ALMA1 region and the larger MM1 cluster. The emission from CH 3 OH (and many other tracers) is extended (>1000 au), revealing a common envelope toward the binary system. We use CH 2 CHCN line emission to estimate an inclination angle of the rotation axis of 26° with respect to the line of sight based on geometric assumptions and derive a kinematic mass of the primary source (protostar+disk) of 3.0 M ⊙ within a radius of 230 au. Using SiO emission, we find that the primary source drives the large-scale outflow revealed by previous observations. Precession of the binary system likely produces a change in orientation between the outflow at small scales observed here and large scales observed in previous works. The bow structure may have originated from the entrainment of matter into the envelope due to the widening or precession of the outflow, or, alternatively, an accretion streamer dominated by the gravity of the central sources. An additional third source, forming due to instabilities in the streamer, cannot be ruled out as a temperature gradient is needed to produce the observed absorption spectra. 
    more » « less
  3. Abstract Asymmetric and narrow infalling structures, often called streamers, have been observed in several Class 0/I protostars, which is not expected in the classical star formation picture. Their origin and impact on the disk formation remain observationally unclear. By combining data from the James Clerk Maxwell Telescope (JCMT) and Atacama Large Millimeter/submillimeter Array (ALMA), we investigate the physical properties of the streamers and parental dense core in the Class 0 protostar, IRAS 16544–1604. Three prominent streamers associated to the disk with lengths between 2800 and 5800 au are identified on the northern side of the protostar in the C18O emission. Their mass and mass infalling rates are estimated to be in the range of (1–4) × 10−3Mand (1–5) × 10−8Myr−1, respectively. Infall signatures are also observed in the more diffuse extended protostellar envelope observed with the ALMA from the comparison to the infalling and rotating envelope model. The parental dense core detected by the JCMT observation has a mass of ∼0.5M, a subsonic to transonic turbulence of M  =  0.8–1.1, and a mass-to-flux ratio of 2–6. Our results show that the streamers in IRAS 16544–1604 only possess 2% of the entire dense core mass and contribute less than 10% of the mass infalling rate of the protostellar envelope. Therefore, the streamers in IRAS 16544–1604 play a minor role in the mass accretion process onto the disk, in contrast to those streamers observed in other sources and those formed in numerical simulations of collapsing dense cores with similar turbulence and magnetic field strengths. 
    more » « less
  4. Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the Class 0 protostar IRAS 04166+2706, obtained as part of the ALMA Large Program Early Planet Formation in Embedded Disks. These observations were made in the 1.3 mm dust continuum and molecular lines at angular resolutions of 0 . 05 (∼8 au) and 0 . 16 (∼25 au), respectively. The continuum emission shows a disklike structure with a radius of ∼22 au. Kinematical analysis of13CO (2–1), C18O (2–1), H2CO (30,3–20,2), CH3OH (42–31) emission demonstrates that these molecular lines trace the infalling-rotating envelope and possibly a Keplerian disk, enabling us to estimate the protostar mass to be 0.15M < M < 0.39M. The dusty disk is found to exhibit a brightness asymmetry along its minor axis in the continuum emission, probably caused by a flared distribution of the dust and the high optical depth of the dust emission. In addition, the12CO (2–1) and SiO (5–4) emissions show knotty and wiggling motions in the jets. Our high-angular-resolution observations revealed the most recent mass ejection events, which have occurred within the last ∼25 yr. 
    more » « less
  5. Abstract Studying the physical and chemical conditions of young embedded disks is crucial to constrain the initial conditions for planet formation. Here we present Atacama Large Millimeter/submillimeter Array observations of dust continuum at ∼0.″06 (8 au) resolution and molecular line emission at ∼0.″17 (24 au) resolution toward the Class 0 protostar L1527 IRS from the Large Program eDisk (Early Planet Formation in Embedded Disks). The continuum emission is smooth without substructures but asymmetric along both the major and minor axes of the disk as previously observed. The detected lines of12CO,13CO, C18O, H2CO, c-C3H2, SO, SiO, and DCN trace different components of the protostellar system, with a disk wind potentially visible in12CO. The13CO brightness temperature and the H2CO line ratio confirm that the disk is too warm for CO freezeout, with the snowline located at ∼350 au in the envelope. Both molecules show potential evidence of a temperature increase around the disk–envelope interface. SO seems to originate predominantly in UV-irradiated regions such as the disk surface and the outflow cavity walls rather than at the disk–envelope interface as previously suggested. Finally, the continuum asymmetry along the minor axis is consistent with the inclination derived from the large-scale (100″ or 14,000 au) outflow, but opposite to that based on the molecular jet and envelope emission, suggesting a misalignment in the system. Overall, these results highlight the importance of observing multiple molecular species in multiple transitions to characterize the physical and chemical environment of young disks. 
    more » « less