skip to main content

Title: Long‐term research catchments to investigate shrub encroachment in the Sonoran and Chihuahuan deserts: Santa Rita and Jornada experimental ranges

Woody plant encroachment is a global phenomenon whereby shrubs or trees replace grasses. The hydrological consequences of this ecological shift are of broad interest in ecohydrology, yet little is known of how plant and intercanopy patch dynamics, distributions, and connectivity influence catchment‐scale responses. To address this gap, we established research catchments in the Sonoran and Chihuahuan Deserts (near Green Valley, Arizona and near Las Cruces, New Mexico, respectively) that represent shrub encroachment in contrasting arid climates. Our main goals in the coordinated observations were to: (a) independently measure the components of the catchment water balance, (b) deploy sensors to quantify the spatial patterns of ecohydrological processes, (c) use novel methods for characterizing catchment properties, and (d) assess shrub encroachment impacts on ecohydrological processes through modelling studies. Datasets on meteorological variables; energy, radiation, and CO2fluxes; evapotranspiration; soil moisture and temperature; and runoff at various scales now extend to nearly 10 years of observations at each site, including both wet and dry periods. Here, we provide a brief overview of data collection efforts and offer suggestions for how the coordinated datasets can be exploited for ecohydrological inferences and modelling studies. Given the representative nature of the catchments, the available databases can be used to generalize findings to other catchments in desert landscapes.

more » « less
Award ID(s):
1832194 2025166
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Quantitative estimations of ecohydrological water partitioning into evaporation and transpiration remains mostly based on plot‐scale investigations that use well‐instrumented, small‐scale experimental catchments in temperate regions. Here, we attempted to upscale and adapt the conceptual tracer‐aided ecohydrology model STARRtropics to simulate water partitioning, tracer, and storage dynamics over daily time steps and a 1‐km grid larger‐scale (2565 km2) in a sparsely instrumented tropical catchment in Costa Rica. The model was driven by bias‐corrected regional climate model outputs and was simultaneously calibrated against daily discharge observations from 2 to 30 years at four discharge gauging stations and a 1‐year, monthly streamwater isotope record of 46 streams. The overall model performance for the best discharge simulations ranged in KGE values from 0.4 to 0.6 and correlation coefficients for streamflow isotopes from 0.3 to 0.45. More importantly, independent model‐derived transpiration estimates, point‐scale residence time estimates, and measured groundwater isotopes showed reasonable model performance and simulated spatial and temporal patterns pointing towards an overall model realism at the catchment scale over reduced performance in the headwaters. The simulated catchment system was dominated by low‐seasonality and high precipitation inputs and a marked topographical gradient. Climatic drivers overrode smaller, landcover‐dependent transpiration fluxes giving a seemingly homogeneous rainfall‐runoff dominance likely related to model input bias of rainfall isotopes, oversimplistic Potential Evapotranspiration (PET) estimates and averaged Leaf Area Index (LAI). Topographic influences resulted in more dynamic water and tracer fluxes in the headwaters that averaged further downstream at aggregated catchment scales. Modelled headwaters showed greater storage capacity by nearly an order of magnitude compared to the lowlands, which also favoured slightly longer residence times (>250 days) compared to superficially well‐connected groundwater contributing to shorter streamflow residence times (<150 days) in the lowlands. Our findings confirm that tracer‐aided ecohydrological modelling, even in the data‐scarce Tropics, can help gain a first, but crucial approximation of spatio‐temporal dynamics of how water is partitioned, stored and transported beyond the experimental catchment scale of only a few km2.

    more » « less
  2. Abstract

    Hydrologic connectivity refers to the processes and thresholds leading to water transport across a landscape. In dryland ecosystems, runoff production is mediated by the arrangement of vegetation and bare soil patches on hillslopes and the properties of ephemeral channels. In this study, we used runoff measurements at multiple scales in a small (4.67 ha) mixed shrubland catchment of the Chihuahuan Desert to identify controls on and thresholds of hillslope‐channel connectivity. By relating short‐ and long‐term hydrologic records, we also addressed whether observed changes in outlet discharge since 1977 were linked to modifications in hydrologic connectivity. Hillslope runoff production was controlled by the maximum rainfall intensity occurring in a 30‐min interval (I30), with small‐to‐negligible effects of antecedent surface soil moisture, vegetation cover, or slope aspect. AnI30threshold of nearly 10 mm/h activated runoff propagation from the shrubland hillslopes and through the main ephemeral channel, whereas anI30threshold of about 16 mm/h was required for discharge from the catchment outlet. Since storms rarely exceedI30, full hillslope‐channel connectivity occurs infrequently in the mixed shrubland, leading to <2% of the annual precipitation being converted into outlet discharge. Progressive decreases in outlet discharge since 1977 could not be explained by variations in precipitation metrics, includingI30, or the process of woody plant encroachment. Instead, channel modifications from the buildup of sediment behind measurement flumes may have increased transmission losses and reduced outlet discharge. Thus, alterations in channel properties can play an important role in the long‐term (45‐year) variations of rainfall–runoff dynamics of small desert catchments.

    more » « less
  3. Abstract

    Lake‐based studies can provide seasonal‐ to millennial‐scale records of sediment yield to improve our understanding of catchment‐scale sediment transfer and complement shorter fluvial‐based sediment transport studies. In this study, sediment accumulation rates at 40 coring locations in Lake Peters, Brooks Range, Alaska, over ca. 42 years, calculated using fallout radionuclides and sediment density patterns, were spatially modelled based on distance from the primary inflow and lake water depth. We estimated mean interdecadal specific sediment yield (Mg km−2 year−1) using the spatially modelled sediment accumulation rates and compared that result to fluvial‐based sediment delivery for 2015–2016 open‐channel seasons, as well as to yields reported for other Arctic catchments. Using the lake‐based method, mean yield to Lake Peters between ca. 1973 and 2015 was 52 ± 12 Mg km−2 year−1, which is comparable with fluvial‐based modelling results of 33 (20–60) Mg km−2 year−1in 2015 and 79 (50–140) Mg km−2 year−1in 2016 (95% confidence intervals), respectively. Although 2016 was a year of above average sedimentation, the last extreme depositional event probably occurred between ca. 1970 and 1976 when a basal layer of fine sand was deposited in a broadly distributed, relatively thick and coarse bed, which we used for lake‐wide correlation. The dual lacustrine–fluvial method approach permits study of within‐lake and catchment‐scale processes. Within Lake Peters, sedimentation patterns show decreasing fluxes down‐lake, sediment bypassing near the primary inflow, the influence of secondary inflows and littoral redistribution, and a focusing effect in the deep proximal basin. At the watershed scale, sediment yield is largely driven by intense summer rainfall and strong seasonal hydroclimatic variability. This research informs paleo‐environmental reconstruction and environmental system modelling in Arctic lake catchments.

    more » « less
  4. Abstract

    Stream and shallow groundwater responses to rainfall are characterized by high spatial variability, but hydrologic response variability across small, agro‐forested sub‐catchments remains poorly understood. Conceivably, improved understanding in this regard will result in agricultural practices that more effectively limit nutrient runoff, erosion, and pollutant transport. Terrestrial hydrologic response approaches can provide valuable information on stream‐aquifer connectivity in these mixed‐use watersheds. A study was implemented, including eight stream and co‐located shallow groundwater monitoring sites, in a small sub‐catchment of the Chesapeake Bay watershed in the Northeast, USA to advance this ongoing need. During the study period, 100 precipitation‐receiving days (i.e., 24‐hour periods, midnight to midnight) were observed. On average, the groundwater table responded more to precipitation than stream stage (level change of 0.03 vs. 0.01 m and rainfall‐normalized level change estimate of 3.81 vs. 3.37). Median stream stage responses, groundwater table responses, and response ratios were significantly different between sub‐catchments (n = 8;p < 0.001). Study area average precipitation thresholds for runoff and shallow groundwater flow were 2.8 and 0.6 cm, respectively. Individual sub‐catchment thresholds ranged from 0.5 to 2.8 cm for runoff and 0.2 to 1.3 cm for shallow groundwater flow. Normalized response lag times between the stream and shallow groundwater ranged from −0.50 to 3.90 s·cm−1, indicating that stormflow in one stream section was regulated by groundwater flow during the period of study. The observed differences in hydrologic responses to precipitation advance future modelling efforts by providing examples of how terrestrial groundwater response methods can be used to investigate sub‐catchment spatial variability in stream‐aquifer gradients with co‐located shallow groundwater and stream stage data. Additionally, results demonstrate asynchronous stream and shallow groundwater responses on precipitation‐receiving days, which may hold important implications for modelling hydrologic and biogeochemical fate and transport processes in small, agro‐forested catchments.

    more » « less
  5. Abstract. Ecohydrological models are powerful tools to quantify the effects that independent fluxes may have on catchment storage dynamics. Here, we adapted the tracer-aided ecohydrological model, EcH2O-iso, for cold regions with the explicit conceptualization of dynamic soil freeze–thaw processes. We tested the model at the data-rich Krycklan site in northern Sweden with multi-criterion calibration using discharge, stream isotopes and soil moisture in three nested catchments. We utilized the model's incorporation of ecohydrological partitioning to evaluate the effect of soil frost on evaporation and transpiration water ages, and thereby the age of source waters. The simulation of stream discharge, isotopes, and soil moisture variability captured the seasonal dynamics at all three stream sites and both soil sites, with notable reductions in discharge and soil moisture during the winter months due to the development of the frost front. Stream isotope simulations reproduced the response to the isotopically depleted pulse of spring snowmelt. The soil frost dynamics adequately captured the spatial differences in the freezing front throughout the winter period, despite no direct calibration of soil frost to measured soil temperature. The simulated soil frost indicated a maximum freeze depth of 0.25&thinsp;m below forest vegetation. Water ages of evaporation and transpiration reflect the influence of snowmelt inputs, with a high proclivity of old water (pre-winter storage) at the beginning of the growing season and a mix of snowmelt and precipitation (young water) toward the end of the summer. Soil frost had an early season influence of the transpiration water ages, with water pre-dating the snowpack mainly sustaining vegetation at the start of the growing season. Given the long-term expected change in the energy balance of northern climates, the approach presented provides a framework for quantifying the interactions of ecohydrological fluxes and waters stored in the soil and understanding how these may be impacted in future.

    more » « less