Passive RFID technology is widely used in user authentication and access control. We propose RF-Rhythm, a secure and usable two-factor RFID authentication system with strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm, each legitimate user performs a sequence of taps on his/her RFID card according to a self-chosen secret melody. Such rhythmic taps can induce phase changes in the backscattered signals, which the RFID reader can detect to recover the user’s tapping rhythm. In addition to verifying the RFID card’s identification information as usual, the backend server compares the extracted tapping rhythm with what it acquires in the user enrollment phase. The user passes authentication checks if and only if both verifications succeed. We also propose a novel phase-hopping protocol in which the RFID reader emits Continuous Wave (CW) with random phases for extracting the user’s secret tapping rhythm. Our protocol can prevent a capable adversary from extracting and then replaying a legitimate tapping rhythm from sniffed RFID signals. Comprehensive user experiments confirm the high security and usability of RF-Rhythm with false-positive and false-negative rates close to zero.
more »
« less
A Phase Variable Approach for Improved Rhythmic and Non-Rhythmic Control of a Powered Knee-Ankle Prosthesis
- PAR ID:
- 10365142
- Publisher / Repository:
- Institute of Electrical and Electronics Engineers
- Date Published:
- Journal Name:
- IEEE Access
- Volume:
- 7
- ISSN:
- 2169-3536
- Page Range / eLocation ID:
- p. 109840-109855
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study a system of coupled phase oscillators near a saddle-node on invariant circle bifurcation and driven by random intrinsic frequencies. Under the variation of control parameters, the system undergoes a phase transition changing the qualitative properties of collective dynamics. Using Ott–Antonsen reduction and geometric techniques for ordinary differential equations, we identify heteroclinic bifurcation in a family of vector fields on a cylinder, which explains the change in collective dynamics. Specifically, we show that heteroclinic bifurcation separates two topologically distinct families of limit cycles: contractible limit cycles before bifurcation from noncontractibile ones after bifurcation. Both families are stable for the model at hand.more » « less
-
Despite our intimate relationship with music in every-day life, we know little about how people create music. A particularly elusive area of study entails the spontaneous collaborative musical creation in the absence of rehearsals or scripts. Toward this aim, we designed an experiment in which pairs of players collaboratively created music in rhythmic improvisation. Rhythmic patterns and collaborative processes were investigated through symbolic-recurrence quantification and information theory, applied to the time series of the sound created by the players. Working with real data on collaborative rhythmic improvisation, we identified features of improvised music and elucidated underlying processes of collaboration. Players preferred certain patterns over others, and their musical experience drove musical collaboration when rhythmic improvisation started. These results unfold prevailing rhythmic features in collaborative music creation while informing the complex dynamics of the underlying processes.more » « less
-
Information coding by precise timing of spikes can be faster and more energy efficient than traditional rate coding. However, spike-timing codes are often brittle, which has limited their use in theoretical neuroscience and computing applications. Here, we propose a type of attractor neural network in complex state space and show how it can be leveraged to construct spiking neural networks with robust computational properties through a phase-to-timing mapping. Building on Hebbian neural associative memories, like Hopfield networks, we first propose threshold phasor associative memory (TPAM) networks. Complex phasor patterns whose components can assume continuous-valued phase angles and binary magnitudes can be stored and retrieved as stable fixed points in the network dynamics. TPAM achieves high memory capacity when storing sparse phasor patterns, and we derive the energy function that governs its fixed-point attractor dynamics. Second, we construct 2 spiking neural networks to approximate the complex algebraic computations in TPAM, a reductionist model with resonate-and-fire neurons and a biologically plausible network of integrate-and-fire neurons with synaptic delays and recurrently connected inhibitory interneurons. The fixed points of TPAM correspond to stable periodic states of precisely timed spiking activity that are robust to perturbation. The link established between rhythmic firing patterns and complex attractor dynamics has implications for the interpretation of spike patterns seen in neuroscience and can serve as a framework for computation in emerging neuromorphic devices.more » « less
An official website of the United States government
