skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transport and co‐transport of carboxylate ions and alcohols in cation exchange membranes
Abstract Understanding multi‐component transport behavior through hydrated dense membranes is of interest for numerous applications. For the particular case of photoelectrochemical CO2reduction cells (PEC‐CRC), it is important to understand the multi‐component transport behavior of CO2electrochemical reduction products including mobile carboxylates (formate and acetate) and alcohols (methanol and ethanol) in the ion exchange membranes as one role of the membrane in these devices is to minimize the permeation of these CO2reduction products to the anolyte as they often oxidize back to CO2. Cation exchange membranes (CEM) are promising candidates for such devices as they act to minimize the permeation of mobile anions, such as carboxylates. However, the design of new CEMs is necessary as the permeation of carboxylates often increases in co‐permeation with alcohols. Here, we investigate the transport behavior of carboxylates and alcohols in two types of CEMs (1) a crosslinked CEM was prepared by free‐radical copolymerization of a sulfonated monomer (AMPS) with a crosslinker (PEGDA), and (2) Nafion® 117. We observe an increase in both PEGDA‐AMPS and Nafion® 117 diffusivities to carboxylates in co‐diffusion with alcohols. We attribute this behavior to charge screening by co‐diffusing alcohol that reduces the electrostatic repulsion between bound sulfonates and mobile carboxylates.  more » « less
Award ID(s):
1936146
PAR ID:
10365268
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
59
Issue:
21
ISSN:
2642-4150
Page Range / eLocation ID:
p. 2545-2558
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding multi-component transport through polymer membranes is critical for separation applications such as water purification, energy devices, etc. Specifically for CO2 reduction cells, where the CO2 reduction products (alcohols and carboxylate salts), crossover of these species is undesirable and improving the design of ion exchange membranes to prevent this behavior is needed. Previously, it was observed that acetate transport increased in copermeation with alcohols for cation exchange membranes consisting of poly(ethylene glycol) diacrylate (PEGDA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and that the inclusion of poly(ethylene glycol) methacrylate (PEGMA) (n = 5, n represents the number of ethylene oxide repeat units) could suppress this behavior. Here, we further investigate the role of PEGMA in modulating fractional free volume and transport behavior of alcohols and carboxylates. PEGDA-PEGMA membranes of varied membranes are fabricated with both varied pre −polymerization water content at constant PEGMA (n = 9) content and varied PEGMA content at two pre −polymerization water contents (20 and 60 wt.% water). Permeability to sodium acetate also decreases in these charge-neutral PEGDA-PEGMA membranes compared to PEGMA-free films. Therefore, incorporation of comonomers such as PEGMA with long side chains may provide a useful membrane chemistry structural motif for preventing undesirable carboxylate crossover in polymer membranes. 
    more » « less
  2. Cyclic voltammetry was applied to investigate the permselective properties of electrode-supported ion-exchange polymer films intended for use in future molecular-scale spectroscopic studies of bipolar membranes. The ability of thin ionomer film assemblies to exclude mobile ions charged similarly to the polymer (co-ions) and accumulate ions charged opposite to the polymer (counterions) was scrutinized through use of the diffusible redox probe molecules [Ru(NH3)6]3+and [IrCl6]2−. With the anion exchange membrane (AEM) phase supported on a carbon disk electrode, bipolar junctions formed by addition of a cation exchange membrane (CEM) overlayer demonstrated high selectivity toward redox ion extraction and exclusion. For junctions formed using a Fumion®AEM phase and a Nafion®overlayer, [IrCl6]2−ions exchanged into Fumion®prior to Nafion®overcoating remained entrapped and the Fumion®excluded [Ru(NH3)6]3+ions for durability testing periods of more than 20 h under conditions of interest for eventualin situspectral measurements. Experiments with the Sustainion®anion exchange ionomer uncovered evidence for [IrCl6]2−ion coordination to pendant imidazolium groups on the polymer. A cyclic voltammetric method for estimation of the effective diffusion coefficient and equilibrium extraction constant for redox active probe ions within inert, uniform density electrode-supported thin films was applied to examine charge transport mechanisms. 
    more » « less
  3. null (Ed.)
    Abstract. Reactive mercury (RM), the sum of both gaseous oxidized Hg and particulatebound Hg, is an important component of the global atmospheric mercury cycle,but measurement currently depends on uncalibrated operationally definedmethods with large uncertainty and demonstrated interferences and artifacts.Cation exchange membranes (CEMs) provide a promising alternative methodologyfor quantification of RM, but method validation and improvements are ongoing.For the CEM material to be reliable, uptake of gaseous elemental mercury(GEM) must be negligible under all conditions and RM compounds must becaptured and retained with high efficiency. In this study, the performance ofCEM material under exposure to high concentrations of GEM (1.43×106 to 1.85×106 pg m−3) and reactive gaseous mercurybromide (HgBr2 ∼5000 pg m−3) was explored using acustom-built mercury vapor permeation system. Quantification of totalpermeated Hg was measured via pyrolysis at 600 ∘C and detectionusing a Tekran® 2537A. Permeation tests wereconducted over 24 to 72 h in clean laboratory air, with absolute humiditylevels ranging from 0.1 to 10 g m−3 water vapor. GEM uptake by the CEMmaterial averaged no more than 0.004 % of total exposure for all testconditions, which equates to a non-detectable GEM artifact for typicalambient air sample concentrations. Recovery of HgBr2 on CEM filters wason average 127 % compared to calculated total permeated HgBr2 based onthe downstream Tekran® 2537A data. The lowHgBr2 breakthrough on the downstream CEMs (< 1 %) suggests thatthe elevated recoveries are more likely related to suboptimal pyrolyzerconditions or inefficient collection on the Tekran® 2537A gold traps. 
    more » « less
  4. Carboxylate anions of various chain lengths are important molecules for many applications such as CO2 reduction, membrane-based bioreactors, etc. Also, carboxylate anions are ubiquitous in biological molecules such as amino acids, fatty acids, etc. Therefore, understanding the transport behavior of carboxylates of different chain lengths in polymer materials is important both as a fundamental phenomenon but also for designing materials for applications. Here, we characterized transport behavior by measuring the permeability (P), and total partition coefficient (K) for a series of polymer membranes for four model carboxylate salts—sodium salts of formate (NaOFm), acetate (NaOAc), propionate (NaOPr), and butanoate (NaOBu)—at varied upstream salt concentrations (0.1–1 M) or a series of polyethylene glycol diacrylate (PEGDA)-based membranes with 1) varying pre-polymerization water content; 2) varying uncharged side chain comonomer (polyethylene glycol methacrylate, PEGMA), and 3) varying charged comonomer)2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS). Also, diffusivity values of the four salts through the membranes have been calculated based on the solution diffusion model equation (Pdouble bondK × D), experimentally obtained permeability, and total partition coefficients. For a majority of these membranes, NaOFm's permeability is much higher than the other three carboxylate salts (NaOAc, NaOPr, and NaOBu) seemingly due to the lower chain length and thereby smaller hydrated diameter. In terms of total partition coefficient, a size-based trend is not observed. For example, NaOBu's total partition coefficient (K) is generally the largest among the four, and at higher upstream salt concentrations (1 M), the values of the total partition coefficients of the four salts converge. From this we conclude that the carboxylate salt transport through these PEGDA-based non-porous dense membranes to be primarily driven by kinetics and not sorption. 
    more » « less
  5. Cation exchange membranes (CEMs) are widely used in many applications. The fixed anionic groups e.g., COO􀀀 , –SO3 - , etc. in the polymer matrix ideally allows the passage only of oppositely charged cations, driven by a potential or a concentration gradient. Anions, charged negative, the same as the membrane matrix, cannot pass through the membrane due to electrostatic repulsion. Such “Donnan-forbidden” passage can, however, occur to some degree, if the electrical or concentration gradient is high enough to overcome the “Donnan barrier”. Except for salt uptake/transport in concentrated salt solutions, the factors that govern such Forbidden Ion Transport (FIT) have rarely been studied. In most applications of transmembrane ion transport, whether electrically driven as in electrodialysis, or concentration-driven, it is the transport of the counterion to the fixed charged groups, such as that of the proton through a CEM, that is usually of interest. Nevertheless, CEMs are also of interest in analytical chemistry, specifically in suppressed ion chromatography. As used in membrane suppressors, both transport of permitted ions and rejection of forbidden ions are important. If the latter is indeed governed by electrostatic factors, other things being equal, the primary governing factor should be the charge density of the membrane, tantamount to its ion exchange capacity (IEC). In fabricating microscale suppressors, we found useful to synthesize a new ion exchange polymer that can be easily molded to make tubular microconduits. Despite a high IEC of this material, FIT was also found to be surprisingly high. We measured several relevant properties for thirteen commercial and four custom-made membranes to discover that while FIT is indeed linearly related to 1/ IEC for a significant number of these membranes, for very high water-content membranes, FIT may be overwhelmingly governed by the water content of the membrane. In addition, FIT through all CEMs differ greatly among strong acids, they may still be transported as the molecular acids and the extent is in the same order as the expected activity of the molecular acid in the CEM. These results are discussed with the perspective that even for strong acids, the transport does take place as un-ionized molecular acids. 
    more » « less