Given a sequence $\{Z_d\}_{d\in \mathbb{N}}$ of smooth and compact hypersurfaces in ${\mathbb{R}}^{n1}$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$ such that each manifold $Z_d$ is diffeomorphic to a component of the zero set on $\Gamma$ of some polynomial of degree $d$. (This is in sharp contrast with the case when $\Gamma$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $p$ on $\Gamma$ is bounded by a polynomial in $\deg (p)$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$ containing a subset $D$ homeomorphic to a disk, and a family of polynomials $\{p_m\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that $(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n1}, Z_{d_m}),$ i.e. the zero set of $p_m$ in $D$ is isotopic to $Z_{d_m}$ in ${\mathbb{R}}^{n1}$. This says that, up to extracting subsequences, the intersection of $\Gamma$ with a hypersurface of degree $d$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $0 \leq k \leq n2$ and every sequence of natural numbers $a=\{a_d\}_{d\in \mathbb{N}}$ there is a regular, compact semianalyticmore »
Let $f(z) = \sum_{n=1}^\infty a_f(n)q^n$ be a holomorphic cuspidal newform with even integral weight $k\geq 2$, level N, trivial nebentypus and no complex multiplication. For all primes p, we may define $\theta_p\in [0,\pi]$ such that $a_f(p) = 2p^{(k1)/2}\cos \theta_p$. The Sato–Tate conjecture states that the angles θp are equidistributed with respect to the probability measure $\mu_{\textrm{ST}}(I) = \frac{2}{\pi}\int_I \sin^2 \theta \; d\theta$, where $I\subseteq [0,\pi]$. Using recent results on the automorphy of symmetric power Lfunctions due to Newton and Thorne, we explicitly bound the error term in the Sato–Tate conjecture when f corresponds to an elliptic curve over $\mathbb{Q}$ of arbitrary conductor or when f has squarefree level. In these cases, if $\pi_{f,I}(x) := \#\{p \leq x : p \nmid N, \theta_p\in I\}$ and $\pi(x) := \# \{p \leq x \}$, we prove the following bound: $$ \left \frac{\pi_{f,I}(x)}{\pi(x)}  \mu_{\textrm{ST}}(I)\right \leq 58.1\frac{\log((k1)N \log{x})}{\sqrt{\log{x}}} \qquad \text{for} \quad x \geq 3. $$ As an application, we give an explicit bound for the number of primes up to x that violate the Atkin–Serre conjecture for f.
 Publication Date:
 NSFPAR ID:
 10365393
 Journal Name:
 The Quarterly Journal of Mathematics
 Volume:
 73
 Issue:
 4
 Page Range or eLocationID:
 p. 11891225
 ISSN:
 00335606
 Publisher:
 Oxford University Press
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract 
The classic graphical Cheeger inequalities state that if $M$ is an $n\times n$ \emph{symmetric} doubly stochastic matrix, then \[ \frac{1\lambda_{2}(M)}{2}\leq\phi(M)\leq\sqrt{2\cdot(1\lambda_{2}(M))} \] where $\phi(M)=\min_{S\subseteq[n],S\leq n/2}\left(\frac{1}{S}\sum_{i\in S,j\not\in S}M_{i,j}\right)$ is the edge expansion of $M$, and $\lambda_{2}(M)$ is the second largest eigenvalue of $M$. We study the relationship between $\phi(A)$ and the spectral gap $1\re\lambda_{2}(A)$ for \emph{any} doubly stochastic matrix $A$ (not necessarily symmetric), where $\lambda_{2}(A)$ is a nontrivial eigenvalue of $A$ with maximum real part. Fiedler showed that the upper bound on $\phi(A)$ is unaffected, i.e., $\phi(A)\leq\sqrt{2\cdot(1\re\lambda_{2}(A))}$. With regards to the lower bound on $\phi(A)$, there are known constructions with \[ \phi(A)\in\Theta\left(\frac{1\re\lambda_{2}(A)}{\log n}\right), \] indicating that at least a mild dependence on $n$ is necessary to lower bound $\phi(A)$. In our first result, we provide an \emph{exponentially} better construction of $n\times n$ doubly stochastic matrices $A_{n}$, for which \[ \phi(A_{n})\leq\frac{1\re\lambda_{2}(A_{n})}{\sqrt{n}}. \] In fact, \emph{all} nontrivial eigenvalues of our matrices are $0$, even though the matrices are highly \emph{nonexpanding}. We further show that this bound is in the correct range (up to the exponent of $n$), by showing that for any doubly stochastic matrix $A$, \[ \phi(A)\geq\frac{1\re\lambda_{2}(A)}{35\cdot n}. \] As a consequence, unlike the symmetric case, there is a (necessary) loss of amore »

F or c e d at a f or a fl a p pi n g f oil e n er g y h ar v e st er wit h a cti v e l e a di n g e d g e m oti o n o p er ati n g i n t h e l o w r e d u c e d fr e q u e n c y r a n g e i s c oll e ct e d t o d et er mi n e h o w l e a di n g e d g e m oti o n aff e ct s e n er g y h ar v e sti n g p erf or m a n c e. T h e f oil pi v ot s a b o ut t h e mi dc h or d a n d o p er at e s i n t h e l o w r e d u c e d fr e q u e n c y r a n g e of 𝑓𝑓more »

Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in
and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$\mathsf {Quasi}\text {}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$ $\mathrm{Quasi}\mathrm{NP}=\mathrm{NTIME}\left[{n}^{{\left(\mathrm{log}n\right)}^{O\left(1\right)}}\right]$ , by showing that$\mathcal { C}$ $C$ admits nontrivial satisfiability and/or$\mathcal { C}$ $C$# SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a nontrivial# SAT algorithm for a circuit class . Say that a symmetric Boolean function${\mathcal C}$ $C$f (x _{1},…,x _{n}) issparse if it outputs 1 onO (1) values of . We show that for every sparse${\sum }_{i} x_{i}$ ${\sum}_{i}{x}_{i}$f , and for all “typical” , faster$\mathcal { C}$ $C$# SAT algorithms for circuits imply lower bounds against the circuit class$\mathcal { C}$ $C$ , which may be$f \circ \mathcal { C}$ $f\circ C$stronger than itself. In particular:$\mathcal { C}$ $C$# SAT algorithms forn ^{k}size circuits running in 2^{n}/$\mathcal { C}$ $C$n ^{k}time (for allk ) implyN E X P does not have circuits of polynomial size.$(f \circ \mathcal { C})$ $(f\circ C)$# SAT algorithms for size$2^{n^{{\varepsilon }}}$ ${2}^{{n}^{\epsilon}}$ circuits running in$\mathcal { C}$ $C$ time (for some$2^{nn^{{\varepsilon }}}$ ${2}^{n{n}^{\epsilon}}$ε > 0) implyQ u a s i N P does not have circuits of polynomial size.$(f \circ \mathcal { C})$ $(f\circ C)$Applying
# SAT algorithms from the literature, one immediate corollary of our results is thatQ u a s i N P does not haveE M A J ∘A C C ^{0}∘T H R circuits of polynomialmore » 
Abstract The Ramsey number $r(C_{\ell },K_n)$ is the smallest natural number $N$ such that every red/blue edge colouring of a clique of order $N$ contains a red cycle of length $\ell $ or a blue clique of order $n$. In 1978, Erd̋s, Faudree, Rousseau, and Schelp conjectured that $r(C_{\ell },K_n) = (\ell 1)(n1)+1$ for $\ell \geq n\geq 3$ provided $(\ell ,n) \neq (3,3)$. We prove that, for some absolute constant $C\ge 1$, we have $r(C_{\ell },K_n) = (\ell 1)(n1)+1$ provided $\ell \geq C\frac{\log n}{\log \log n}$. Up to the value of $C$ this is tight since we also show that, for any $\varepsilon>0$ and $n> n_0(\varepsilon )$, we have $r(C_{\ell }, K_n) \gg (\ell 1)(n1)+1$ for all $3 \leq \ell \leq (1\varepsilon )\frac{\log n}{\log \log n}$. This proves the conjecture of Erd̋s, Faudree, Rousseau, and Schelp for large $\ell $, a stronger form of the conjecture due to Nikiforov, and answers (up to multiplicative constants) two further questions of Erd̋s, Faudree, Rousseau, and Schelp.