skip to main content


Title: Understanding the drivers of dispersal evolution in range expansions and their ecological consequences
Abstract

Research has conclusively demonstrated the potential for dispersal evolution in range expansions and shifts, however the degree of dispersal evolution observed has varied substantially among organisms. Further, it is unknown how the factors influencing dispersal evolution might impact other ecological processes at play. We use an individual-based model to investigate the effects of the underlying genetics of dispersal and mode of reproduction in range expansions and shifts. Consistent with predictions from stationary populations, dispersal evolution increases with sexual reproduction and loci number. Contrary to our predictions, however, increased dispersal does not always improve a population’s ability to track changing conditions. The mate finding Allee effect inherent to sexual reproduction increases extinction risk during range shifts, counteracting the beneficial effect of increased dispersal evolution. Our results demonstrate the importance of considering both ecological and evolutionary processes for understanding range expansions and shifts.

 
more » « less
Award ID(s):
2019528
NSF-PAR ID:
10365475
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Evolutionary Ecology
Volume:
36
Issue:
2
ISSN:
0269-7653
Page Range / eLocation ID:
p. 181-197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phenotypic plasticity is one way for organisms to deal with variable environments through generalism. However, plasticity is not found universally and its evolution may be constrained by costs and other limitations such as complexity: the need for multiple mutational steps before the adaptation is realized. Theory predicts that greater experienced heterogeneity, such as organisms may encounter when spatial heterogeneity is fine-grained relative to dispersal, should favor the evolution of a broader niche. Here we tested this prediction via simulation. We found that, contrary to classical predictions, coarse-grained landscapes can be the most favorable for the evolution of plasticity, but only when populations encounter those landscapes through range expansion. During these range expansions, coarse-grained landscapes select for each step in the complex mutational pathway to plastic generalism by blocking the dispersal of specialists. These circumstances provide ecological opportunities for innovative mutations that change the niche. Our results indicate a new mechanism by which range expansion and spatially structured landscapes interact to shape evolution and reveal that the environments in which a complex adaptation has the highest fitness may not be the most favorable for its evolution.

     
    more » « less
  2. Abstract

    The genomic variation of an invasive species may be affected by complex demographic histories and evolutionary changes during the invasion. Here, we describe the relative influence of bottlenecks, clonality, and population expansion in determining genomic variability of the widespread red macroalgaAgarophyton vermiculophyllum. Its introduction from mainland Japan to the estuaries of North America and Europe coincided with shifts from predominantly sexual to partially clonal reproduction and rapid adaptive evolution. A survey of 62,285 SNPs for 351 individuals from 35 populations, aligned to 24 chromosome‐length scaffolds indicate that linkage disequilibrium (LD), observed heterozygosity (Ho), Tajima's D, and nucleotide diversity (Pi) were greater among non‐native than native populations. Evolutionary simulations indicate LD and Tajima's D were consistent with a severe population bottleneck. Also, the increased rate of clonal reproduction in the non‐native range could not have produced the observed patterns by itself but may have magnified the bottleneck effect on LD. Elevated marker diversity in the genetic source populations could have contributed to the increasedHoand Pi observed in the non‐native range. We refined the previous invasion source region to a ~50 km section of northeastern Honshu Island. Outlier detection methods failed to reveal any consistently differentiated loci shared among invaded regions, probably because of the complexA. vermiculophyllumdemographic history. Our results reinforce the importance of demographic history, specifically founder effects, in driving genomic variation of invasive populations, even when localized adaptive evolution and reproductive system shifts are observed.

     
    more » « less
  3. Abstract

    Island biodiversity has long fascinated biologists as it typically presents tractable systems for unpicking the eco‐evolutionary processes driving community assembly. In general, two recurring themes are of central theoretical interest. First, immigration, diversification, and extinction typically depend on island geographical properties (e.g., area, isolation, and age). Second, predictable ecological and evolutionary trajectories readily occur after colonization, such as the evolution of adaptive trait syndromes, trends toward specialization, adaptive radiation, and eventual ecological decline. Hypotheses such as the taxon cycle draw on several of these themes to posit particular constraints on colonization and subsequent eco‐evolutionary dynamics. However, it has been challenging to examine these integrated dynamics with traditional methods. Here, we combine phylogenomics, population genomics and phenomics, to unravel community assembly dynamics amongPheidole(Hymenoptera, Formicidae) ants in the isolated Fijian archipelago. We uphold basic island biogeographic predictions that isolated islands accumulate diversity primarily through in situ evolution rather than dispersal, and population genomic support for taxon cycle predictions that endemic species have decreased dispersal ability and demography relative to regionally widespread taxa. However, rather than trending toward island syndromes, ecomorphological diversification in Fiji was intense, filling much of the genus‐level global morphospace. Furthermore, while most endemic species exhibit demographic decline and reduced dispersal, we show that the archipelago is not an evolutionary dead‐end. Rather, several endemic species show signatures of population and range expansion, including a successful colonization to the Cook islands. These results shed light on the processes shaping island biotas and refine our understanding of island biogeographic theory.

     
    more » « less
  4. Sexual reproduction is a fundamental process essential for species persistence, evolution, and diversity. However, unprecedented oceanographic shifts due to climate change can impact physiological processes, with important implications for sexual reproduction. Identifying bottlenecks and vulnerable stages in reproductive cycles will enable better prediction of the organism, population, community, and global-level consequences of ocean change. This article reviews how ocean acidification impacts sexual reproductive processes in marine invertebrates and highlights current research gaps. We focus on five economically and ecologically important taxonomic groups: cnidarians, crustaceans, echinoderms, molluscs and ascidians. We discuss the spatial and temporal variability of experimental designs, identify trends of performance in acidified conditions in the context of early reproductive traits (gametogenesis, fertilization, and reproductive resource allocation), and provide a quantitative meta-analysis of the published literature to assess the effects of low pH on fertilization rates across taxa. A total of 129 published studies investigated the effects of ocean acidification on 122 species in selected taxa. The impact of ocean acidification is dependent on taxa, the specific reproductive process examined, and study location. Our meta-analysis reveals that fertilization rate decreases as pH decreases, but effects are taxa-specific. Echinoderm fertilization appears more sensitive than molluscs to pH changes, and while data are limited, fertilization in cnidarians may be the most sensitive. Studies with echinoderms and bivalve molluscs are prevalent, while crustaceans and cephalopods are among the least studied species even though they constitute some of the largest fisheries worldwide. This lack of information has important implications for commercial aquaculture, wild fisheries, and conservation and restoration of wild populations. We recommend that studies expose organisms to different ocean acidification levels during the entire gametogenic cycle, and not only during the final stages before gametes or larvae are released. We argue for increased focus on fundamental reproductive processes and associated molecular mechanisms that may be vulnerable to shifts in ocean chemistry. Our recommendations for future research will allow for a better understanding of how reproduction in invertebrates will be affected in the context of a rapidly changing environment. 
    more » « less
  5. Abstract Aim

    We investigate the biogeographical history and diversification in a treefrog lineage distributed in contrasting (open and forested) ecoregions of South America, including three biodiversity hotspots. We evaluate the role of dispersal and whether other factors such as diversity‐dependence or paleotemperatures could explain the diversification pattern for this group. Especially focusing on the savanna endemics, we illuminate the processes governing the species assembly and evolution of the Cerrado savanna.

    Location

    South American ecoregions south of the Amazon (i.e. Atlantic Forest, Cerrado, Araucaria Forest, Pampas, Central and Southern Andes).

    Taxon

    Boana pulchellagroup.

    Methods

    We built the most complete time‐calibrated phylogeny for the group to date. We then reconstructed ancestral ranges using the dispersal‐extinction‐cladogenesis (DEC) model comparing different dispersal scenarios considering distance, adjacency and ecological similarity among regions. Centre‐of‐origin hypotheses in forest and open ecoregions were also tested. Using biogeographical stochastic mapping, we additionally estimated the contribution of range shifts across different biomes. Lastly, we evaluated several diversification models, including the effect of time, diversity‐dependence and temperature‐dependence on speciation and extinction rates.

    Results

    TheBoana pulchellagroup originated during the Early Miocene (~17.5 MYA) and underwent high speciation rates during the Middle Miocene Climatic Optimum, with a decreasing trend following the Miocene Climatic Transition. We found no support for a single ecoregion acting as a centre of origin and diversification; instead, we inferred recurrent range shifts with dispersal among dissimilar adjacent ecoregions. Speciation linearly dependent on paleotemperatures, with either no or very low constant extinction rates, best explained the slowdown diversification pattern.

    Main conclusions

    Our results support a species assembly of Cerrado savanna in South America during the Miocene with intermittent interchange with rain forest habitats. Past climate changes impacted the rate new species originated with apparently no impact on extinction. Finally, the repeated habitat shifts among open/dry and forested/humid ecoregions, rather than long‐term in‐situ diversification in single areas, highlights the very dynamic historical interchange between contrasting habitats in South America, possibly contributing to its high species diversity.

     
    more » « less