skip to main content

Title: Fabrication and magnetoelectric investigation of flexible PVDF-TrFE/cobalt ferrite nanocomposite films
Abstract

Flexible nanocomposite films, with cobalt ferrite nanoparticles (CFN) as the ferromagnetic component and polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE) copolymer as the ferroelectric matrix, were fabricated using a blade coating technique. Nanocomposite films were prepared using a two-step process; the first process involves the synthesis of cobalt ferrite (CoFe2O4) nanoparticles using a sonochemical method, and then incorporation of various weight percentages (0, 2.5, 5, and 10%) of cobalt ferrite nanoparticles into the PVDF-TrFE to form nanocomposites. The ferroelectric polarβphase of PVDF-TrFE was confirmed by x-ray diffraction (XRD). Thermal studies of films showed notable improvement in the thermal properties of the nanocomposite films with the incorporation of nanoparticles. The ferroelectric properties of the pure polymer/composite films were studied, showing a significant improvement of maximum polarization upon 5wt% CFN loading in PVDF-TrFE composite films compared to the PVDF-TrFE film. The magnetic properties of as-synthesized CFN and the polymer nanocomposites were studied, showing a magnetic saturation of 53.7 emu g−1at room temperature, while 10% cobalt ferrite-(PVDF-TrFE) nanocomposite shows 27.6 emu/g. We also describe a process for fabricating high optical quality pure PVDF-TrFE and pinhole-free nanocomposite films. Finally, the mechanical studies revealed that the mechanical strength of the films increases up to 5 wt% loading of more » the nanoparticles in the copolymer matrix and then decreases. This signifies that the obtained films could be suited for flexible electronics.

« less
Authors:
; ; ; ; ;
Award ID(s):
1827690
Publication Date:
NSF-PAR ID:
10365644
Journal Name:
Materials Research Express
Volume:
9
Issue:
4
Page Range or eLocation-ID:
Article No. 046302
ISSN:
2053-1591
Publisher:
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Incorporation of nanoparticles into polymer blend films can lead to a synergistic combination of properties and functionalities. Adding a large concentration of nanoparticles into a polymer blend matrix via conventional melting or solution blending techniques, however, is challenging due to the tendency of particles to aggregate. Herein, we report a straightforward approach to generate polymer blend/nanoparticle ternary composite films with extremely high loadings of nanoparticles based on monomer-driven infiltration of polymer and photopolymerization. The fabrication process consists of three steps: (1) preparing a bilayer with a nanoparticle (NP) layer atop a polymer layer, (2) annealing of the bilayer with a vapour mixture of a monomer and a photoinitiator, which undergoes capillary condensation and imparts mobility to the polymer layer and (3) exposing this film to UV light to induce photopolymerization of the monomer. The monomer used in this process is chemically different from the repeat unit of the polymer in the bilayer and is a good solvent for the polymer. The second step leads to the infiltration of the plasticized polymer, and the third step results in a blend of two polymers in the interstices of the nanoparticle layer. By varying the thickness ratio of the polymer and nanoparticle layersmore »in the initial bilayers and changing the UV exposure duration, the volume fraction of the two polymers in the composite films can be adjusted. This versatile approach enables the design and engineering of a new class of nanocomposite films that contain a nanoscale-blend of two polymers in the interstices of a nanoparticle film, which could have combinations of unique mechanical and transport properties desirable for advanced applications such as membrane separations, conductive composite films and solar cells. Moreover, these polymer blend-filled nanoparticle films could serve as model systems to study the effect of confinement on the miscibility and morphology of polymer blends.« less
  2. Abstract

    Chemical looping air separation (CLAS) is a promising technology for oxygen generation with high efficiency. The key challenge for CLAS is to design robust oxygen sorbents with suitable redox properties and fast redox kinetics. In this work, perovskite-structured Sr1-xCaxFe1-yCoyO3oxygen sorbents were investigated and demonstrated for oxygen production with tunable redox properties, high redox rate, and excellent thermal/steam stability. Cobalt doping at B site was found to be highly effective, 33% improvement in oxygen productivity was observed at 500 °C. Moreover, it stabilizes the perovskite structure and prevents phase segregation under pressure swing conditions in the presence of steam. Scalable synthesis of Sr0.8Ca0.2Fe0.4Co0.6O3oxygen sorbents was carried out through solid state reaction, co-precipitation, and sol-gel methods. Both co-precipitation and sol-gel methods are capable of producing Sr0.8Ca0.2Fe0.4Co0.6O3sorbents with satisfactory phase purity, high oxygen capacity, and fast redox kinetics. Large scale evaluation of Sr0.8Ca0.2Fe0.4Co0.6O3, using an automated CLAS testbed with over 300 g sorbent loading, further demonstrated the effectiveness of the oxygen sorbent to produce 95% pure O2with a satisfactory productivity of 0.04 gO2gsorbent−1h−1at 600 °C.

  3. Epitaxial thin films of cobalt ferrite (CoFe2O4) are grown on two isostructural substrates, (001)-oriented MgGa2O4and ZnGa2O4, using pulsed laser deposition. The substrates have a lattice mismatch of 1.26% and 0.70% with bulk CoFe2O4(CFO) crystal. We have systematically investigated the structural and magnetic properties of the epitaxial CFO films on these substrates. X-ray diffraction and transmission electron microscopy result analysis reveal that the films deposited on spinel ZnGa2O4are essentially free of defects and are under a small compressive strain, while films on MgGa2O4show partial strain relaxation along with defect formation. Room temperature magnetization data indicate that CFO grown on ZnGa2O4substrates have a bulk-like saturation magnetization of 420 emu/cc and a uniaxial substrate-induced anisotropy value of [Formula: see text] [Formula: see text] erg/cm3with an anisotropy field as low as 60 kOe.

  4. Next generation displays and lighting applications are increasingly using inorganic quantum dots (QDs) embedded in polymer matrices to impart bright and tunable emission properties. The toxicity of some heavy metals present in commercial QDs ( e.g. cadmium) has, however, raised concerns about the potential for QDs embedded in polymer matrices to be released during the manufacture, use, and end-of-life phases of the material. One important potential release scenario that polymer composites can experience in the environment is photochemically induced matrix degradation. This process is not well understood at the molecular level. To study this process, the effect of an artificially accelerated weathering process on QD–polymer nanocomposites has been explored by subjecting CdSe and CdSe/ZnS QDs embedded in poly(methyl methacrylate) (PMMA) to UVC irradiation in aqueous media. Significant matrix degradation of QD–PMMA was observed along with measurable mass loss, yellowing of the nanocomposites, and a loss of QD fluorescence. While ICP-MS identified the release of ions, confocal laser scanning microscopy and dark-field hyperspectral imaging were shown to be effective analytical techniques for revealing that QD-containing polymer fragments were also released into aqueous media due to matrix degradation. Viability experiments, which were conducted with Shewanella oneidensis MR-1, showed a statistically significant decreasemore »in bacterial viability when the bacteria were exposed to highly degraded QD-containing polymer fragments. Results from this study highlight the need to quantify not only the extent of nanoparticle release from a polymer nanocomposite but also to determine the form of the released nanoparticles ( e.g. ions or polymer fragments).« less
  5. High performance lightweight metals offer tremendous potential to improve energy efficiency and system performance for numerous applications. Traditional manufacturing processes such as thermomechanical processing and deformation have reached their limits in further improving the properties of metals. Thus, a new approach is necessary to develop high performance lightweight metals which can offer promising properties. Metal matrix nanocomposite (MMNC) is an excellent approach to produce lightweight metals with improved properties that cannot be achieved by traditional manufacturing. Effective incorporation of a suitable nanoparticles system in a metallic matrix such as aluminum (Al) can improve the performance of the matrix. However, due to the high chemical reactivity and poor wettability of Al with nanoparticles, achieving high volume fraction of nanoparticles incorporation is of a great challenge. Here we show a novel approach to incorporate high volume fraction of titanium diboride (TiB2) nanoparticles in Al matrix. Al-TiB2 nanocomposite microparticles were initially produced via flux assisted solidification processes. Al-TiB2 nanocomposites were produced by cold compaction followed by melting. Scanning electron microscopic (SEM) images revealed that the TiB2 nanoparticles are unfirmly dispersed and distributed in Al matrix. Al-TiB2 nanocomposites with as high as 485.9±16.9 Vickers hardness were successfully produced. Furthermore, the effect of melting timemore »was studied on the hardness of the Al-TiB2 nanocomposites.« less