skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sea‐surface temperature anomalies mediate changes in fish richness and abundance in Atlantic and Gulf of Mexico estuaries
Abstract AimAnthropogenic warming of marine systems has caused biological and physiological responses that are fundamentally altering ecosystem structure. Because estuaries exist at the land‐ocean interface, they are particularly vulnerable to the effects of ocean warming as they can undergo rapid biogeochemical and hydrological shifts due to climate and land‐use change. We explored how multiple components of estuarine fish diversity—turnover, richness, and abundance—have changed in the North Atlantic and Gulf of Mexico estuaries across space and time and the drivers of change. LocationNorth Atlantic and Gulf of Mexico. TaxaFish. MethodWe compiled long‐term (>30 years), continent‐wide fisheries independent trawl surveys conducted in estuaries—from the Gulf of Maine to the Gulf of Mexico (U.S. waters)—and combined these with climate and land‐use‐land‐cover data to examine trends and ecological drivers of fish richness, abundance and turnover using mixed‐effect models. ResultsSpecies richness, abundance and turnover have increased in North Atlantic and Gulf of Mexico estuaries in the last 30 years. These changes were mediated largely by sea‐surface temperature anomalies, especially in more northern estuaries where warming has been relatively pronounced. Main ConclusionThe increasing trajectory of turnover in many estuaries suggests that fish communities have changed fundamentally from the baselines. A fundamental change in community composition can lead to an irreversible trophic imbalance or alternative stable states among other outcomes. Thus, predicting how shifting community structures might influence food webs, ecosystem stability, and human resource use remain a pertinent task.  more » « less
Award ID(s):
1926395 2027821
PAR ID:
10376184
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Biogeography
Volume:
49
Issue:
9
ISSN:
0305-0270
Page Range / eLocation ID:
p. 1609-1617
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Along the Gulf ofAlaska, rapid glacier retreat has driven changes in transport of freshwater, sediments, and nutrients to estuary habitats. Over the coming decades, deglaciation will lead to a temporary increase, followed by a long-term decline of glacial influence on estuaries. Therefore, quantifying the current variability in estuarine fish community structure in regions predicted to be most affected by glacier loss is necessary to anticipate future impacts. We analyzed fish community data collected monthly (April through September) over 7 years (2013–2019) from glacially influenced estuaries along the southeastern Gulf of Alaska. River delta sites within estuaries were sampled along a natural gradient of glacial to non-glacial watersheds to characterize variation in fish communities exposed to varying degrees of glacial influence. Differences in seasonal patterns of taxa richness and abundance between the most and least glacially influenced sites suggest that hydrological drivers influence the structure of delta fish communities. The most glacially influenced sites had lower richness but higher abundance overall compared to those with least glacial influence; however, differences among sites were small compared to differences across months. Two dominant species—Pacific staghorn sculpin and starry flounder—contributed most to spatial and temporal variation in community composition; however, given only small interannual differences in richness and abundance over the period of the study, we conclude that year-to-year variation at these sites is relatively low at present. Our study provides an important benchmark against which to compare shifts in fish communities as watersheds and downstream estuaries continue to transform in the coming decades. 
    more » « less
  2. Abstract The Arctic is warming four times faster than the global average1and plant communities are responding through shifts in species abundance, composition and distribution2–4. However, the direction and magnitude of local changes in plant diversity in the Arctic have not been quantified. Using a compilation of 42,234 records of 490 vascular plant species from 2,174 plots across the Arctic, here we quantified temporal changes in species richness and composition through repeat surveys between 1981 and 2022. We also identified the geographical, climatic and biotic drivers behind these changes. We found greater species richness at lower latitudes and warmer sites, but no indication that, on average, species richness had changed directionally over time. However, species turnover was widespread, with 59% of plots gaining and/or losing species. Proportions of species gains and losses were greater where temperatures had increased the most. Shrub expansion, particularly of erect shrubs, was associated with greater species losses and decreasing species richness. Despite changes in plant composition, Arctic plant communities did not become more similar to each other, suggesting no biotic homogenization so far. Overall, Arctic plant communities changed in richness and composition in different directions, with temperature and plant–plant interactions emerging as the main drivers of change. Our findings demonstrate how climate and biotic drivers can act in concert to alter plant composition, which could precede future biodiversity changes that are likely to affect ecosystem function, wildlife habitats and the livelihoods of Arctic peoples5,6
    more » « less
  3. Tropical storms pose a significant risk to coastal populations, including those throughout the Caribbean and along the Atlantic and Gulf coasts of North America. The impact of climate change on tropical storms is multifaceted, and patterns of sea surface temperature (SST) change may play a role in shaping future tropical storm risk. While the SST fingerprints associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) may be uncertain, the North Atlantic Warming Hole (NAWH) and enhanced SST warming near the Gulf Stream are robust features of both past and projected future climate change. Here we use the Community Earth System Model version 2 (CESM2) to highlight the remote contributions of both of these potential SST fingerprints of AMOC decline to changes in tropical cyclone (TC) genesis potential in the Atlantic basin, and thus to uncertainty in future coastal climate risk. Both the NAWH and enhanced warming near the Gulf Stream lead to significant changes in TC genesis potential, particularly in the western North Atlantic (between Bermuda and the Bahamas), the northeastern Gulf of Mexico and the Caribbean Sea, where changes are on the order of ±10% over the full Atlantic hurricane season, with considerably stronger responses focused in the two halves of the season. Diagnosis of the Genesis Potential Index (GPI) indicates that changes in mid-tropospheric humidity and vertical wind shear are the most important factors driving these responses. The simulated changes in GPI occur in regions of considerable historical TC genesis, highlighting the need to further understand the historical and projected future patterns of SST change in the North Atlantic Ocean, including their relationship to AMOC and its potential decline. 
    more » « less
  4. Abstract Climate change is causing rapid, unexpected changes to ecosystems through alteration to environmental regimes, modification of species interactions, and increased frequency and magnitude of disturbances. Yet, how the type of disturbance affects food webs remains ambiguous. Long‐term studies capturing ecosystem responses to extreme events are necessary to understand climate effects on species interactions and ecosystem resilience but remain rare. In the Gulf of Mexico, our 8‐year study captured two disturbances that had contrasting effects on predator abundance and cascading effects on estuarine food webs. In 2017, Hurricane Harvey destroyed fishing infrastructure, fishing activity declined, and sportfish populations increased ~40% while intermediate trophic levels that sportfish prey upon declined ~50%. Then, in 2021, a fish kill caused by freezing temperatures during Winter Storm Uri reduced sportfish populations by ~60% and intermediate trophic levels increased by over 250%. Sportfish abundance affected the abundance and size of oyster reef mesopredators. Excluding fish predators significantly altered oyster reef community structure. These results demonstrate how extreme events shape communities and influence their resilience based on their effects on top predators. Moreover, top‐down forces from sportfish are important in estuaries, persist through disturbances, and influence community resilience, highlighting the necessity of proper recreational fisheries management through extreme events. 
    more » « less
  5. Abstract The prevailing conceptual model for the production of severe local storm (SLS) environments over North America asserts that upstream elevated terrain and the Gulf of Mexico are both essential to their formation. This work tests this hypothesis using two prescribed-ocean climate model experiments with North American topography removed or the Gulf of Mexico converted to land and analyzes how SLS environments and associated synoptic-scale drivers (southerly Great Plains low-level jets, drylines, elevated mixed layers, and extratropical cyclones) change relative to a control historical run. Overall, SLS environments depend strongly on upstream elevated terrain but more weakly on the Gulf of Mexico. Removing elevated terrain substantially reduces SLS environments especially over the continental interior due to broad reductions in both thermodynamic instability and vertical wind shear, leaving a more zonally uniform residual distribution that is maximized near the Gulf coast and decays toward the continental interior. This response is associated with a strong reduction in synoptic-scale drivers and a cooler and drier mean-state atmosphere. Replacing the Gulf of Mexico with land modestly reduces SLS environments over the Great Plains (driven primarily thermodynamically) and increases them over the eastern United States (driven primarily kinematically), shifting the primary local maximum eastward into Illinois; it also eliminates the secondary, smaller local maximum over southern Texas. This response is associated with modest changes in synoptic-scale drivers and a warmer and drier lower troposphere. These experiments provide insight into the role of elevated terrain and the Gulf of Mexico in modifying the spatial distribution and seasonality of SLS environments. 
    more » « less