This work treats resonant collisions between five identical ultracold bosons in the framework of the adiabatic hyperspherical representation. The five-body recombination rate coefficient is quantified using a semiclassical description in conjunction with an analysis of the lowest five-body hyperspherical adiabatic potential curves in a scattering length regime with no universal weakly bound tetramers, trimers, or dimers. A comparison is made between these results and the only existing experimental measurement of five-body loss in an ultracold gas of bosonic cesium atoms and with the lone theoretical estimation of the loss rate. The recombination rate for the processB+B+B+B+B→B4+Bis also computed in a different regime of scattering lengths where there is one universal bound tetramer by implementing a few-channel quantum scattering calculation based on five-body hyperspherical potential curves and nonadiabatic couplings. Our calculations predict regions where five-body recombination can cause decay of the atom cloud in an ultracold gas that is even faster than 3-body and 4-body recombination, which can ideally be tested by using the current generation of box traps having nearly uniform density.
more »
« less
Losses, Many‐Body Correlations, and Universality in Ultracold Molecules
Abstract Recent experimental developments have allowed physicists to freeze molecules' motion down to an ultracold temperature regime where quantum effects become profound. Furthermore, each molecule can be precisely prepared at chosen internal states and the mutual interactions between molecules are also highly tunable. As such, ultracold molecules have emerged as a powerful platform in multiple disciplines across physics and chemistry. Meanwhile, a grand challenge exists as to how losses of molecules depend on a quantum many‐body environment. In this article, the recent experimental and theoretical progress of exploring losses of ultracold molecules is reviewed. Since the conventional theoretical scheme of treating isolated pairs of molecules is no longer applicable to the quantum degenerate regime that has been reached in recent experiments, an alternative framework of universal relations between two‐body losses and many‐body correlations has been established. Regardless of microscopic parameters ranging from the temperature and the particle number to the interaction strength, these universal relations always hold. This approach unfolds a simple universality behind complex loss processes of many‐body systems and provides physicists and chemists with a new tool to explore ultracold molecules.
more »
« less
- Award ID(s):
- 2110614
- PAR ID:
- 10365838
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Quantum Technologies
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2511-9044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rapid progress in atomic, molecular, and optical (AMO) physics techniques enabled the creation of ultracold samples of molecular species and opened opportunities to explore chemistry in the ultralow temperature regime. In particular, both the external and internal quantum degrees of freedom of the reactant atoms and molecules are controlled, allowing studies that explored the role of the long-range potential in ultracold reactions. The kinetics of these reactions have typically been determined using the loss of reactants as proxies. To extend such studies into the short-range, we developed an experimental apparatus that combines the production of quantum-state-selected ultracold KRb molecules with ion mass and kinetic energy spectrometry, and directly observed KRb + KRb reaction intermediates and products [M.-G. Hu and Y. Liu, et al. , Science , 2019, 366 , 1111]. Here, we present the apparatus in detail. For future studies that aim for detecting the quantum states of the reaction products, we demonstrate a photodissociation based scheme to calibrate the ion kinetic energy spectrometer at low energies.more » « less
-
The calcium monofluoride (CaF) molecule has emerged as a promising candidate for precision measurements, quantum simulation, and ultracold chemistry experiments. Inelastic and reactive collisions of laser cooled CaF molecules in optical tweezers have recently been reported and collisions of cold Li atoms with CaF are of current experimental interest. In this paper, we report ab initio electronic structure and full-dimensional quantum dynamical calculations of the Li + CaF → LiF + Ca chemical reaction. The electronic structure calculations are performed using the internally contracted multi-reference configuration-interaction method with Davidson correction (MRCI + Q). An analytic fit of the interaction energies is obtained using a many-body expansion method. A coupled-channel quantum reactive scattering approach implemented in hyperspherical coordinates is adopted for the scattering calculations under cold conditions. Results show that the Li + CaF reaction populates several low-lying vibrational levels and many rotational levels of the product LiF molecule and that the reaction is inefficient in the 1–100 mK regime allowing sympathetic cooling of CaF by collisions with cold Li atoms.more » « less
-
We develop double microwave shielding, which has recently enabled evaporative cooling to the first Bose-Einstein condensate of polar molecules [Bigagli , Nature , 289 (2024)]. Two microwave fields of different frequency and polarization are employed to effectively shield polar molecules from inelastic collisions and three-body recombination. Here, we describe in detail the theory of double microwave shielding. We demonstrate that double microwave shielding effectively suppresses two- and three-body losses. Simultaneously, dipolar interactions and the scattering length can be flexibly tuned, enabling comprehensive control over interactions in ultracold gases of polar molecules. We show that this approach works universally for a wide range of molecules. This opens the door to studying many-body physics with strongly interacting dipolar quantum matter.more » « less
-
Ultracold polyatomic molecules have potentially wide-ranging applications in quantum simulation and computation, particle physics, and quantum chemistry. For atoms and small molecules, direct laser cooling has proven to be a powerful tool for quantum science in the ultracold regime. However, the feasibility of laser-cooling larger, nonlinear polyatomic molecules has remained unknown because of their complex structure. We laser-cooled the symmetric top molecule calcium monomethoxide (CaOCH3), reducing the temperature of ~104molecules from 22 ± 1 millikelvin to 1.8 ± 0.7 millikelvin in one dimension and state-selectively cooling two nuclear spin isomers. These results demonstrate that the use of proper ro-vibronic transitions enables laser cooling of nonlinear molecules, thereby opening a path to efficient cooling of chiral molecules and, eventually, optical tweezer arrays of complex polyatomic species.more » « less
An official website of the United States government
