Entropy-stabilized oxides are single-phase, multicomponent oxides that are stabilized by a large entropy of mixing, ΔS, overcoming a positive enthalpy. Due to the −TΔS term in the Gibbs' free energy, G, it can be hypothesized that entropy-stabilized oxides demonstrate a robust thermal stability. Here, we investigate the high temperature stability (1300–1700 °C) of the prototypical entropy-stabilized rocksalt oxide (MgCoNiCuZn)0.2O in air. We find that at temperatures >1300 °C, the material gradually loses Cu and Zn with increasing temperature. Cu is lost through a selective melting as a Cu-rich liquid phase is formed. Zn is sublimed from the rocksalt phase at approximately similar temperatures to those corresponding to the Cu loss, significantly below both the melting temperature of ZnO and its solubility limit in a rocksalt phase. The elemental loss progressively reduces the entropy of mixing and results in a multiphase solid upon quenching to room temperature. We posit that the high-temperature solubility of Cu and Zn is correlated providing further evidence for entropic stabilization over general solubility arguments.
more »
« less
Settling the matter of the role of vibrations in the stability of high-entropy carbides
Abstract High-entropy ceramics are attracting significant interest due to their exceptional chemical stability and physical properties. While configurational entropy descriptors have been successfully implemented to predict their formation and even to discover new materials, the contribution of vibrations to their stability has been contentious. This work unravels the issue by computationally integrating disorder parameterization, phonon modeling, and thermodynamic characterization. Three recently synthesized carbides are used as a testbed: (HfNbTaTiV)C, (HfNbTaTiW)C, and (HfNbTaTiZr)C. It is found that vibrational contributions should not be neglected when precursors or decomposition products have different nearest-neighbor environments from the high-entropy carbide.
more »
« less
- Award ID(s):
- 1921973
- PAR ID:
- 10366142
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications.more » « less
-
null (Ed.)The emergence of high-entropy materials (HEMs) with their excellent mechanical properties, stability at high temperatures, and high chemical stability is poised to yield new advancement in the performance of energy storage and conversion technologies. This review covers the recent developments in catalysis, water splitting, fuel cells, batteries, supercapacitors, and hydrogen storage enabled by HEMs covering metallic, oxide, and non-oxide alloys. Here, first, the primary rules for the proper selection of the elements and the formation of a favorable single solid solution phase in HEMs are defined. Furthermore, recent developments in different fields of energy conversion and storage achieved by HEMs are discussed. Higher electrocatalytic and catalytic activities with longer cycling stability and durability compared to conventional noble metal-based catalysts are reported for high-entropy materials. In electrochemical energy storage systems, high-entropy oxides and alloys have shown superior performance as anode and cathode materials with long cycling stability and high capacity retention. Also, when used as metal hydrides for hydrogen storage, remarkably high hydrogen storage capacity and structural stability are observed for HEMs. In the end, future directions and new energy-related technologies that can be enabled by the application of HEMs are outlined.more » « less
-
Abstract Discovering multifunctional materials with tunable plasmonic properties, capable of surviving harsh environments is critical for advanced optical and telecommunication applications. We chose high-entropy transition-metal carbides because of their exceptional thermal, chemical stability, and mechanical properties. By integrating computational thermodynamic disorder modeling and time-dependent density functional theory characterization, we discovered a crossover energy in the infrared and visible range, corresponding to a metal-to-dielectric transition, exploitable for plasmonics. It was also found that the optical response of high-entropy carbides can be largely tuned from the near-IR to visible when changing the transition metal components and their concentration. By monitoring the electronic structures, we suggest rules for optimizing optical properties and designing tailored high-entropy ceramics. Experiments performed on the archetype carbide HfTa 4 C 5 yielded plasmonic properties from room temperature to 1500K. Here we propose plasmonic transition-metal high-entropy carbides as a class of multifunctional materials. Their combination of plasmonic activity, high-hardness, and extraordinary thermal stability will result in yet unexplored applications.more » « less
-
Herein, we critically evaluate computational and experimental studies in the emerging field of high-entropy ultra-high-temperature ceramics. High-entropy ultra-high-temperature ceramics are candidates for use in extreme environments that include temperatures over 2,000°C, heat fluxes of hundreds of watts per square centimeter, or irradiation from neutrons with energies of several megaelectron volts. Computational studies have been used to predict the ability to synthesize stable high-entropy materials as well as the resulting properties but face challenges such as the number and complexity of unique bonding environments that are possible for these compositionally complex compounds. Experimental studies have synthesized and densified a large number of different high-entropy borides and carbides, but no systematic studies of composition-structure-property relationships have been completed. Overall, this emerging field presents a number of exciting research challenges and numerous opportunities for future studies.more » « less
An official website of the United States government

