skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seasonal forecasting of landfast ice in Foggy Island Bay, Alaska in support of ice road operations
Award ID(s):
1735862
PAR ID:
10366290
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Cold Regions Science and Technology
Volume:
201
Issue:
C
ISSN:
0165-232X
Page Range / eLocation ID:
103618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The largest uncertainty in future sea-level rise is loss of ice from the Greenland and Antarctic Ice Sheets. Ice shelves, freely floating platforms of ice that fringe the ice sheets, play a crucial role in restraining discharge of grounded ice into the ocean through buttressing. However, since the 1990s, several ice shelves have thinned, retreated, and collapsed. If this pattern continues, it could expose thick cliffs that become structurally unstable and collapse in a process called marine ice cliff instability (MICI). However, the feedbacks between calving, retreat, and other forcings are not well understood. Here we review observed modes of calving from ice shelves and marine-terminating glaciers, and their relation to environmental forces. We show that the primary driver of calving is long-term internal glaciological stress, but as ice shelves thin they may become more vulnerable to environmental forcing. This vulnerability—and the potential for MICI—comes from a combination of the distribution of preexisting flaws within the ice and regions where the stress is large enough to initiate fracture. Although significant progress has been made modeling these processes, theories must now be tested against a wide range of environmental and glaciological conditions in both modern and paleo conditions. ▪ Ice shelves, floating platforms of ice fed by ice sheets, shed mass in a near-instantaneous fashion through iceberg calving. ▪ Most ice shelves exhibit a stable cycle of calving front advance and retreat that is insensitive to small changes in environmental conditions. ▪ Some ice shelves have retreated or collapsed completely, and in the future this could expose thick cliffs that could become structurally unstable called ice cliff instability. ▪ The potential for ice shelf and ice cliff instability is controlled by the presence and evolution of flaws or fractures within the ice. 
    more » « less
  2. Abstract The formation of platelet ice is well known to occur under Antarctic sea ice, where subice platelet layers form from supercooled ice shelf water. In the Arctic, however, platelet ice formation has not been extensively observed, and its formation and morphology currently remain enigmatic. Here, we present the first comprehensive, long‐term in situ observations of a decimeter thick subice platelet layer under free‐drifting pack ice of the Central Arctic in winter. Observations carried out with a remotely operated underwater vehicle (ROV) during the midwinter leg of the MOSAiC drift expedition provide clear evidence of the growth of platelet ice layers from supercooled water present in the ocean mixed layer. This platelet formation takes place under all ice types present during the surveys. Oceanographic data from autonomous observing platforms lead us to the conclusion that platelet ice formation is a widespread but yet overlooked feature of Arctic winter sea ice growth. 
    more » « less
  3. Our understanding of sea ice and its role within Earth's climate system is underpinned by observation. Observations come in many forms, from qualitative records to quantitative data, and they have one key thing in common: they are made in situ. Direct measurements comprise most in situ observations; however, remote sensing technologies are also regularly used in situ to measure sea-ice physical properties. In this chapter, we provide an overview of in situ observations (including remote sensing) of sea ice from expeditions, drifting ice stations, autonomous platforms, and ongoing observation programs. We give a chronological account of sea-ice observations, highlighting the technological breakthroughs in sea-ice measurement techniques that have expanded observational capabilities. The chapter concludes with an outlook of future sea-ice observations and ways to bring observational and modeling efforts together to accelerate knowledge of the polar regions and Earth's climate. 
    more » « less