- Award ID(s):
- 2107391
- NSF-PAR ID:
- 10366302
- Date Published:
- Journal Name:
- 27th International Conference on Intelligent User Interfaces (IUI ’22)
- Page Range / eLocation ID:
- 794 to 806
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Explanations can help users of Artificial Intelligent (AI) systems gain a better understanding of the reasoning behind the model’s decision, facilitate their trust in AI, and assist them in making informed decisions. Due to its numerous benefits in improving how users interact and collaborate with AI, this has stirred the AI/ML community towards developing understandable or interpretable models to a larger degree, while design researchers continue to study and research ways to present explanations of these models’ decisions in a coherent form. However, there is still the lack of intentional design effort from the HCI community around these explanation system designs. In this paper, we contribute a framework to support the design and validation of explainable AI systems; one that requires carefully thinking through design decisions at several important decision points. This framework captures key aspects of explanations ranging from target users, to the data, to the AI models in use. We also discuss how we applied our framework to design an explanation interface for trace link prediction of software artifacts.more » « less
-
The use of AI-based decision aids in diverse domains has inspired many empirical investigations into how AI models’ decision recommendations impact humans’ decision accuracy in AI-assisted decision making, while explorations on the impacts on humans’ decision fairness are largely lacking despite their clear importance. In this paper, using a real-world business decision making scenario—bidding in rental housing markets—as our testbed, we present an experimental study on understanding how the bias level of the AI-based decision aid as well as the provision of AI explanations affect the fairness level of humans’ decisions, both during and after their usage of the decision aid. Our results suggest that when people are assisted by an AI-based decision aid, both the higher level of racial biases the decision aid exhibits and surprisingly, the presence of AI explanations, result in more unfair human decisions across racial groups. Moreover, these impacts are partly made through triggering humans’ “disparate interactions” with AI. However, regardless of the AI bias level and the presence of AI explanations, when people return to make independent decisions after their usage of the AI-based decision aid, their decisions no longer exhibit significant unfairness across racial groups.
-
Explaining to users why some items are recommended is critical, as it can help users to make better decisions, increase their satisfaction, and gain their trust in recommender systems (RS). However, existing explainable RS usually consider explanation as a side output of the recommendation model, which has two problems: (1) It is difficult to evaluate the produced explanations, because they are usually model-dependent, and (2) as a result, how the explanations impact the recommendation performance is less investigated. In this article, explaining recommendations is formulated as a ranking task and learned from data, similarly to item ranking for recommendation. This makes it possible for standard evaluation of explanations via ranking metrics (e.g., Normalized Discounted Cumulative Gain). Furthermore, this article extends traditional item ranking to an item–explanation joint-ranking formalization to study if purposely selecting explanations could reach certain learning goals, e.g., improving recommendation performance. A great challenge, however, is that the sparsity issue in the user-item-explanation data would be inevitably severer than that in traditional user–item interaction data, since not every user–item pair can be associated with all explanations. To mitigate this issue, this article proposes to perform two sets of matrix factorization by considering the ternary relationship as two groups of binary relationships. Experiments on three large datasets verify the solution’s effectiveness on both explanation ranking and item recommendation.more » « less
-
null (Ed.)Textual explanations have proved to help improve user satisfaction on machine-made recommendations. However, current mainstream solutions loosely connect the learning of explanation with the learning of recommendation: for example, they are often separately modeled as rating prediction and content generation tasks. In this work, we propose to strengthen their connection by enforcing the idea of sentiment alignment between a recommendation and its corresponding explanation. At training time, the two learning tasks are joined by a latent sentiment vector, which is encoded by the recommendation module and used to make word choices for explanation generation. At both training and inference time, the explanation module is required to generate explanation text that matches sentiment predicted by the recommendation module. Extensive experiments demonstrate our solution outperforms a rich set of baselines in both recommendation and explanation tasks, especially on the improved quality of its generated explanations. More importantly, our user studies confirm our generated explanations help users better recognize the differences between recommended items and understand why an item is recommended.more » « less
-
Combining uncertainty information with AI recommendations supports calibration with domain knowledgeThe use of Artificial Intelligence (AI) decision support is increasing in high-stakes contexts, such as healthcare, defense, and finance. Uncertainty information may help users better leverage AI predictions, especially when combined with their domain knowledge. We conducted a human-subject experiment with an online sample to examine the effects of presenting uncertainty information with AI recommendations. The experimental stimuli and task, which included identifying plant and animal images, are from an existing image recognition deep learning model, a popular approach to AI. The uncertainty information was predicted probabilities for whether each label was the true label. This information was presented numerically and visually. In the study, we tested the effect of AI recommendations in a within-subject comparison and uncertainty information in a between-subject comparison. The results suggest that AI recommendations increased both participants’ accuracy and confidence. Further, providing uncertainty information significantly increased accuracy but not confidence, suggesting that it may be effective for reducing overconfidence. In this task, participants tended to have higher domain knowledge for animals than plants based on a self-reported measure of domain knowledge. Participants with more domain knowledge were appropriately less confident when uncertainty information was provided. This suggests that people use AI and uncertainty information differently, such as an expert versus second opinion, depending on their level of domain knowledge. These results suggest that if presented appropriately, uncertainty information can potentially decrease overconfidence that is induced by using AI recommendations.more » « less