skip to main content

Title: Brownian bridges for stochastic chemical processes—An approximation method based on the asymptotic behavior of the backward Fokker–Planck equation
A Brownian bridge is a continuous random walk conditioned to end in a given region by adding an effective drift to guide paths toward the desired region of phase space. This idea has many applications in chemical science where one wants to control the endpoint of a stochastic process—e.g., polymer physics, chemical reaction pathways, heat/mass transfer, and Brownian dynamics simulations. Despite its broad applicability, the biggest limitation of the Brownian bridge technique is that it is often difficult to determine the effective drift as it comes from a solution of a Backward Fokker–Planck (BFP) equation that is infeasible to compute for complex or high-dimensional systems. This paper introduces a fast approximation method to generate a Brownian bridge process without solving the BFP equation explicitly. Specifically, this paper uses the asymptotic properties of the BFP equation to generate an approximate drift and determine ways to correct (i.e., re-weight) any errors incurred from this approximation. Because such a procedure avoids the solution of the BFP equation, we show that it drastically accelerates the generation of conditioned random walks. We also show that this approach offers reasonable improvement compared to other sampling approaches using simple bias potentials.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider particles obeying Langevin dynamics while being at known positions and having known velocities at the two end-points of a given interval. Their motion in phase space can be modeled as an Ornstein–Uhlenbeck process conditioned at the two end-points—a generalization of the Brownian bridge. Using standard ideas from stochastic optimal control we construct a stochastic differential equation (SDE) that generates such a bridge that agrees with the statistics of the conditioned process, as a degenerate diffusion. Higher order linear diffusions are also considered. In general, a time-varying drift is sufficient to modify the prior SDE and meet the end-point conditions. When the drift is obtained by solving a suitable differential Lyapunov equation, the SDE models correctly the statistics of the bridge. These types of models are relevant in controlling and modeling distribution of particles and the interpolation of density functions. 
    more » « less
  2. We present a new method to sample conditioned trajectories of a system evolving under Langevin dynamics based on Brownian bridges. The trajectories are conditioned to end at a certain point (or in a certain region) in space. The bridge equations can be recast exactly in the form of a non-linear stochastic integro-differential equation. This equation can be very well approximated when the trajectories are closely bundled together in space, i.e., at low temperature, or for transition paths. The approximate equation can be solved iteratively using a fixed point method. We discuss how to choose the initial trajectories and show some examples of the performance of this method on some simple problems. This method allows us to generate conditioned trajectories with a high accuracy. 
    more » « less
  3. This paper is concerned with the mathematical analysis of an inverse random source problem for the time fractional diffusion equation, where the source is driven by a fractional Brownian motion. Given the random source, the direct problem is to study the stochastic time fractional diffusion equation. The inverse problem is to determine the statistical properties of the source from the expectation and variance of the final time data. For the direct problem, we show that it is well-posed and has a unique mild solution under a certain condition. For the inverse problem, the uniqueness is proved and the instability is characterized. The major ingredients of the analysis are based on the properties of the Mittag–Leffler function and the stochastic integrals associated with the fractional Brownian motion. 
    more » « less
  4. Abstract We study the Kardar–Parisi–Zhang (KPZ) equation on the half-line x ⩾ 0 with Neumann type boundary condition. Stationary measures of the KPZ dynamics were characterized in recent work: they depend on two parameters, the boundary parameter u of the dynamics, and the drift − v of the initial condition at infinity. We consider the fluctuations of the height field when the initial condition is given by one of these stationary processes. At large time t , it is natural to rescale parameters as ( u , v ) = t −1/3 ( a , b ) to study the critical region. In the special case a + b = 0, treated in previous works, the stationary process is simply Brownian. However, these Brownian stationary measures are particularly relevant in the bound phase ( a < 0) but not in the unbound phase. For instance, starting from the flat or droplet initial condition, the height field near the boundary converges to the stationary process with a > 0 and b = 0, which is not Brownian. For a + b ⩾ 0, we determine exactly the large time distribution F a , b stat of the height function h (0, t ). As an application, we obtain the exact covariance of the height field in a half-line at two times 1 ≪ t 1 ≪ t 2 starting from stationary initial condition, as well as estimates, when starting from droplet initial condition, in the limit t 1 / t 2 → 1. 
    more » « less
  5. In many mechanistic medical, biological, physical, and engineered spatiotemporal dynamic models the numerical solution of partial differential equations (PDEs), especially for diffusion, fluid flow and mechanical relaxation, can make simulations impractically slow. Biological models of tissues and organs often require the simultaneous calculation of the spatial variation of concentration of dozens of diffusing chemical species. One clinical example where rapid calculation of a diffusing field is of use is the estimation of oxygen gradients in the retina, based on imaging of the retinal vasculature, to guide surgical interventions in diabetic retinopathy. Furthermore, the ability to predict blood perfusion and oxygenation may one day guide clinical interventions in diverse settings, i.e., from stent placement in treating heart disease to BOLD fMRI interpretation in evaluating cognitive function (Xie et al., 2019 ; Lee et al., 2020 ). Since the quasi-steady-state solutions required for fast-diffusing chemical species like oxygen are particularly computationally costly, we consider the use of a neural network to provide an approximate solution to the steady-state diffusion equation. Machine learning surrogates, neural networks trained to provide approximate solutions to such complicated numerical problems, can often provide speed-ups of several orders of magnitude compared to direct calculation. Surrogates of PDEs could enable use of larger and more detailed models than are possible with direct calculation and can make including such simulations in real-time or near-real time workflows practical. Creating a surrogate requires running the direct calculation tens of thousands of times to generate training data and then training the neural network, both of which are computationally expensive. Often the practical applications of such models require thousands to millions of replica simulations, for example for parameter identification and uncertainty quantification, each of which gains speed from surrogate use and rapidly recovers the up-front costs of surrogate generation. We use a Convolutional Neural Network to approximate the stationary solution to the diffusion equation in the case of two equal-diameter, circular, constant-value sources located at random positions in a two-dimensional square domain with absorbing boundary conditions. Such a configuration caricatures the chemical concentration field of a fast-diffusing species like oxygen in a tissue with two parallel blood vessels in a cross section perpendicular to the two blood vessels. To improve convergence during training, we apply a training approach that uses roll-back to reject stochastic changes to the network that increase the loss function. The trained neural network approximation is about 1000 times faster than the direct calculation for individual replicas. Because different applications will have different criteria for acceptable approximation accuracy, we discuss a variety of loss functions and accuracy estimators that can help select the best network for a particular application. We briefly discuss some of the issues we encountered with overfitting, mismapping of the field values and the geometrical conditions that lead to large absolute and relative errors in the approximate solution. 
    more » « less