skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fully Printed Stretchable and Multifunctional E‐Textiles for Aesthetic Wearable Electronic Systems
Abstract Electronic textiles (e‐textiles) that combine the wearing comfort of textiles and the functionality of soft electronics are highly demanded in wearable applications. However, fabricating robust high‐performance stretchable e‐textiles with good abrasion resistance and high‐resolution aesthetic patterns for high‐throughput manufacturing and practical applications remains challenging. Herein, the authors report a new multifunctional e‐textile fabricated via screen printing of the water‐based silver fractal dendrites conductive ink. The as‐fabricated e‐textiles spray‐coated with the invisible waterproofing agent exhibit superior flexibility, water resistance, wearing comfort, air permeability, and abrasion resistance, achieving a low sheet resistance of 0.088 Ω sq−1, high stretchability of up to 154%, and excellent dynamic stability for over 1000 cyclic testing (ε = 100%). The printed e‐textiles can be explored as strain sensors and ultralow voltage‐driven Joule heaters driven for personalized thermal management. They finally demonstrate an integrated aesthetic smart clothing made of their multifunctional e‐textiles for human motion detection and body‐temperature management. The printed e‐textiles provide new opportunities for developing novel wearable electronics and smart clothing for future commercial applications.  more » « less
Award ID(s):
2024649
PAR ID:
10366386
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
18
Issue:
13
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Smart textiles that sense, interact, and adapt to environmental stimuli have provided exciting new opportunities for a variety of applications. However, current advances have largely remained at the research stage due to the high cost, complexity of manufacturing, and uncomfortableness of environment‐sensitive materials. In contrast, natural textile materials are more attractive for smart textiles due to their merits in terms of low cost and comfortability. Here, water fog and humidity‐driven torsional and tensile actuation of thermally set twisted, coiled, plied silk fibers, and weave textiles from these silk fibers are reported. When exposed to water fog, the torsional silk fiber provides a fully reversible torsional stroke of 547° mm−1. Coiled‐and‐thermoset silk yarns provide a 70% contraction when the relative humidity is changed from 20% to 80%. Such an excellent actuation behavior originates from water absorption‐induced loss of hydrogen bonds within the silk proteins and the associated structural transformation, which are corroborated by atomistic and macroscopic characterization of silk and molecular dynamics simulations. With its large abundance, cost‐effectiveness, and comfortability for wearing, the silk muscles will open up additional possibilities in industrial applications, such as smart textiles and soft robotics. 
    more » « less
  2. Derek Abbott (Ed.)
    For centuries, people have put effort to improve the thermal performance of clothing to adapt to varying temperatures. However, most clothing we wear today only offers a single-mode insulation. The adoption of active thermal management devices, such as resistive heaters, Peltier coolers, and water recirculation, is limited by their excessive energy consumption and form factor for long-term, continuous, and personalized thermal comfort. In this paper, we developed a wearable variable-emittance (WeaVE) device, enabling the tunable radiative heat transfer coefficient to fill the missing gap between thermoregulation energy efficiency and controllability. WeaVE is an electrically driven, kirigami-enabled electrochromic thin-film device that can effectively tune the midinfrared thermal radiation heat loss of the human body. The kirigami design provides stretchability and conformal deformation under various modes and exhibits excellent mechanical stability after 1,000 cycles. The electronic control enables programmable personalized thermoregulation. With less than 5.58 mJ/cm2 energy input per switching, WeaVE provides 4.9°C expansion of the thermal comfort zone, which is equivalent to a continuous power input of 33.9 W/m2. This nonvolatile characteristic substantially decreases the required energy while maintaining the on-demand controllability, thereby providing vast opportunities for the next generation of smart personal thermal managing fabrics and wearable technologies. 
    more » « less
  3. Abstract Smart textiles are currently being pursued for actuation and sensing for their potential to directly incorporate “intelligence” into the fabric, in contrast to wearable technologies. In smart textiles, smart materials (e.g., piezoelectric) are formed into yarns that are woven into fabrics for clothing. One immediate requirement for such textiles is their stability during washing cycles, as expected of any clothing items, which has been largely lacking so far. Here, we investigate the washing stability of nanofibrous piezoelectric textiles. Our results reveal that electrospun textiles exhibit remarkable structural stability from the fiber microstructure to the textile level. Overall fiber crystalline composition and electroactive phase remain stable within 1% of ~47% and ~85%, respectively. Mechanically, the textile displays sustained performance, with only negligible changes observed. The yield strain and stress only show a ~8% and 9% differences, respectively. Moreover, piezoelectric stability is confirmed through phase preservation and slight variation in voltage output of ~6%. These results prove the candidacy that the processing of electrospun polyvinylidene fluoride (PVDF) fibers to woven textiles is applicable to the demands of smart textiles, which is expected to accelerate the commercialization of such textiles for wearable robotics and health monitoring. 
    more » « less
  4. The ability to control one's personal microclimate allows for customized comfort, reduced energy expenditure, and better human performance. Here we present the design of a multi-zone user-controllable heated jacket. The garment uses a multi-layer textile approach to provide e-textile heating and thermal insulation. Heating zones are controlled by the user through a sleeve-mounted multi-sensor e-textile interface. A custom textile-integrated 3D printed strain-relief support protects the interface and provides a counter-force for manual interaction. The garment is designed for everyday wearability in a physical and aesthetic form intended to blend in with everyday clothing. 
    more » « less
  5. Future wearable electronics and smart textiles face a major challenge in the development of energy storage devices that are high-performing while still being flexible, lightweight, and safe. Fiber supercapacitors are one of the most promising energy storage technologies for such applications due to their excellent electrochemical characteristics and mechanical flexibility. Over the past decade, researchers have put in tremendous effort and made significant progress on fiber supercapacitors. It is now the time to assess the outcomes to ensure that this kind of energy storage device will be practical for future wearable electronics and smart textiles. While the materials, fabrication methods, and energy storage performance of fiber supercapacitors have been summarized and evaluated in many previous publications, this review paper focuses on two practical questions: Are the reported devices providing sufficient energy and power densities to wearable electronics? Are the reported devices flexible and durable enough to be integrated into smart textiles? To answer the first question, we not only review the electrochemical performance of the reported fiber supercapacitors but also compare them to the power needs of a variety of commercial electronics. To answer the second question, we review the general approaches to assess the flexibility of wearable textiles and suggest standard methods to evaluate the mechanical flexibility and stability of fiber supercapacitors for future studies. Lastly, this article summarizes the challenges for the practical application of fiber supercapacitors and proposes possible solutions. 
    more » « less