skip to main content


Title: Brightest cluster galaxies trace weak lensing mass bias and halo triaxiality in the three hundred project
ABSTRACT

Galaxy clusters have a triaxial matter distribution. The weak-lensing signal, an important part in cosmological studies, measures the projected mass of all matter along the line of sight, and therefore changes with the orientation of the cluster. Studies suggest that the shape of the brightest cluster galaxy (BCG) in the centre of the cluster traces the underlying halo shape, enabling a method to account for projection effects. We use 324 simulated clusters at four redshifts between 0.1 and 0.6 from ‘The Three Hundred Project’ to quantify correlations between the orientation and shape of the BCG and the halo. We find that haloes and their embedded BCGs are aligned, with an average ∼20 degree angle between their major axes. The bias in weak lensing cluster mass estimates correlates with the orientation of both the halo and the BCG. Mimicking observations, we compute the projected shape of the BCG, as a measure of the BCG orientation, and find that it is most strongly correlated to the weak-lensing mass for relaxed clusters. We also test a 2D cluster relaxation proxy measured from BCG mass isocontours. The concentration of stellar mass in the projected BCG core compared to the total stellar mass provides an alternative proxy for the BCG orientation. We find that the concentration does not correlate to the weak-lensing mass bias, but does correlate with the true halo mass. These results indicate that the BCG shape and orientation for large samples of relaxed clusters can provide information to improve weak-lensing mass estimates.

 
more » « less
Award ID(s):
1852239
NSF-PAR ID:
10366409
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
513
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2178-2193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present our determination of the baryon budget for an X-ray-selected XXL sample of 136 galaxy groups and clusters spanning nearly two orders of magnitude in mass (M500 ∼ 1013–1015 M⊙) and the redshift range 0 ≲ z ≲ 1. Our joint analysis is based on the combination of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) weak-lensing mass measurements, XXL X-ray gas mass measurements, and HSC and Sloan Digital Sky Survey multiband photometry. We carry out a Bayesian analysis of multivariate mass-scaling relations of gas mass, galaxy stellar mass, stellar mass of brightest cluster galaxies (BCGs), and soft-band X-ray luminosity, by taking into account the intrinsic covariance between cluster properties, selection effect, weak-lensing mass calibration, and observational error covariance matrix. The mass-dependent slope of the gas mass–total mass (M500) relation is found to be $1.29_{-0.10}^{+0.16}$, which is steeper than the self-similar prediction of unity, whereas the slope of the stellar mass–total mass relation is shallower than unity; $0.85_{-0.09}^{+0.12}$. The BCG stellar mass weakly depends on cluster mass with a slope of $0.49_{-0.10}^{+0.11}$. The baryon, gas mass, and stellar mass fractions as a function of M500 agree with the results from numerical simulations and previous observations. We successfully constrain the full intrinsic covariance of the baryonic contents. The BCG stellar mass shows the larger intrinsic scatter at a given halo total mass, followed in order by stellar mass and gas mass. We find a significant positive intrinsic correlation coefficient between total (and satellite) stellar mass and BCG stellar mass and no evidence for intrinsic correlation between gas mass and stellar mass. All the baryonic components show no redshift evolution.

     
    more » « less
  2. ABSTRACT

    Galaxy cluster masses, rich with cosmological information, can be estimated from internal dark matter (DM) velocity dispersions, which in turn can be observationally inferred from satellite galaxy velocities. However, galaxies are biased tracers of the DM, and the bias can vary over host halo and galaxy properties as well as time. We precisely calibrate the velocity bias, bv – defined as the ratio of galaxy and DM velocity dispersions – as a function of redshift, host halo mass, and galaxy stellar mass threshold ($M_{\rm \star , sat}$), for massive haloes ($M_{\rm 200c}\gt 10^{13.5} \, {\rm M}_\odot$) from five cosmological simulations: IllustrisTNG, Magneticum, Bahamas + Macsis, The Three Hundred Project, and MultiDark Planck-2. We first compare scaling relations for galaxy and DM velocity dispersion across simulations; the former is estimated using a new ensemble velocity likelihood method that is unbiased for low galaxy counts per halo, while the latter uses a local linear regression. The simulations show consistent trends of bv increasing with M200c and decreasing with redshift and $M_{\rm \star , sat}$. The ensemble-estimated theoretical uncertainty in bv is 2–3 per cent, but becomes percent-level when considering only the three highest resolution simulations. We update the mass–richness normalization for an SDSS redMaPPer cluster sample, and find our improved bv estimates reduce the normalization uncertainty from 22 to 8 per cent, demonstrating that dynamical mass estimation is competitive with weak lensing mass estimation. We discuss necessary steps for further improving this precision. Our estimates for $b_v(M_{\rm 200c}, M_{\rm \star , sat}, z)$ are made publicly available.

     
    more » « less
  3. ABSTRACT

    Galaxy sizes correlate closely with the sizes of their parent dark matter haloes, suggesting a link between halo formation and galaxy growth. However, the precise nature of this relation and its scatter remains to be understood fully, especially for low-mass galaxies. We analyse the galaxy–halo size relation (GHSR) for low-mass ($M_\star \sim 10^{7-9}\, {\rm M}_\odot$) central galaxies over the past 12.5 billion years with the help of cosmological volume simulations (FIREbox) from the Feedback in Realistic Environments (FIRE) project. We find a nearly linear relationship between the half-stellar mass galaxy size R1/2 and the parent dark matter halo virial radius Rvir. This relation evolves only weakly since redshift z = 5: $R_{1/2}\, [{\rm kpc}] = (0.053\pm 0.002)(R_{\rm vir}/35\, {\rm kpc})^{0.934\pm 0.054}$, with a nearly constant scatter $\langle \sigma \rangle = 0.084\, [{\rm dex}]$. While this ratio is similar to what is expected from models where galaxy disc sizes are set by halo angular momentum, the low-mass galaxies in our sample are not angular momentum supported, with stellar rotational to circular velocity ratios vrot/vcirc ∼ 0.15. Introducing redshift as another parameter to the GHSR does not decrease the scatter. Furthermore, this scatter does not correlate with any of the halo properties we investigate – including spin and concentration – suggesting that baryonic processes and feedback physics are instead critical in setting the scatter in the GHSR. Given the relatively small scatter and the weak dependence of the GHSR on redshift and halo properties for these low-mass central galaxies, we propose using galaxy sizes as an independent method from stellar masses to infer halo masses.

     
    more » « less
  4. The mass profiles of massive dark matter halos are highly sensitive to the nature of dark matter and potential modifications of the theory of gravity on large scales. The Λ cold dark matter (CDM) paradigm makes strong predictions on the shape of dark matter halos and on the dependence of the shape parameters on halo mass, such that any deviation from the predicted universal shape would have important implications for the fundamental properties of dark matter. Here we use a set of 12 galaxy clusters with available deep X-ray and Sunyaev–Zel’dovich data to constrain the shape of the gravitational field with an unprecedented level of precision over two decades in radius. We introduce a nonparametric framework to reconstruct the shape of the gravitational field under the assumption of hydrostatic equilibrium and compare the resulting mass profiles to the expectations of Navarro–Frenk–White (NFW) and Einasto parametric mass profiles. On average, we find that the NFW profile provides an excellent description of the recovered mass profiles, with deviations of less than 10% over a wide radial range. However, there appears to be more diversity in the shape of individual profiles than can be captured by the NFW model. The average NFW concentration and its scatter agree very well with the prediction of the ΛCDM framework. For a subset of systems, we disentangle the gravitational field into the contribution of baryonic components (gas, brightest cluster galaxy, and satellite galaxies) and that of dark matter. The stellar content dominates the gravitational field inside ∼0.02 R 500 but is responsible for only 1–2% of the total gravitational field inside R 200 . The total baryon fraction reaches the cosmic value at R 200 and slightly exceeds it beyond this point, possibly indicating a mild level of nonthermal pressure support (10 − 20%) in cluster outskirts. Finally, the relation between observed and baryonic acceleration exhibits a complex shape that strongly departs from the radial acceleration relation in spiral galaxies, which shows that the aforementioned relation does not hold at the galaxy-cluster scale. 
    more » « less
  5. ABSTRACT

    Secondary halo properties beyond mass, such as the mass accretion rate (MAR), concentration, and the half mass scale, are essential in understanding the formation of large-scale structure and dark matter haloes. In this paper, we study the impact of secondary halo properties on the galaxy-galaxy lensing observable, ΔΣ. We build an emulator trained on N-body simulations to model ΔΣ and quantify the impact of different secondary parameters on the ΔΣ profile. We focus on the impact of MAR on ΔΣ. We show that a 3σ detection of variations in MAR at fixed halo mass could be achieved with the Hyper Suprime Cam survey assuming no baryonic effects and a proxy for MAR with scatter <1.5. We show that the full radial profile of ΔΣ depends on secondary properties at fixed halo mass. Consequently, an emulator that can perform full shape fitting yields better than two times improvement upon the constraints on MAR than only using the outer part of the halo. Finally, we highlight that miscentring and MAR impact the radial profile of ΔΣ in a similar fashion, implying that miscentring and MAR need to be modelled jointly for unbiased estimates of both effects. We show that present-day lensing data sets have the statistical capability to place constraints on halo MAR within our assumptions. Our analysis opens up new possibilities for observationally measuring the assembly history of the dark matter haloes that host galaxies and clusters.

     
    more » « less