skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: After The Fall: Resolving the Molecular Gas in Post-starburst Galaxies
Abstract Post-starburst (PSB), or “E + A,” galaxies represent a rapid transitional phase between major, gas-rich mergers and gas-poor, quiescent, early-type galaxies. Surprisingly, many PSBs have been shown to host a significant interstellar medium (ISM), despite theoretical predictions that the majority of the star-forming gas should be expelled in active galactic nuclei– or starburst-driven outflows. To date, the resolved properties of this surviving ISM have remained unknown. We present high-resolution ALMA continuum and CO(2–1) observations in six gas- and dust-rich PSBs, revealing for the first time the spatial and kinematic structure of their ISM on sub-kpc scales. We find extremely compact molecular reservoirs, with dust and gas surface densities rivaling those found in (ultra)luminous infrared galaxies. We observe spatial and kinematic disturbances in all sources, with some also displaying disk-like kinematics. Estimates of the internal turbulent pressure in the gas exceed those of normal star-forming disks by at least 2 orders of magnitude, and rival the turbulent gas found in local interacting galaxies, such as the Antennae. Though the source of this high turbulent pressure remains uncertain, we suggest that the high incidence of tidal disruption events in PSBs could play a role. The star formation in these PSBs’ turbulent central molecular reservoirs is suppressed, forming stars only 10% as efficiently as starburst galaxies with similar gas surface densities. “The fall” of star formation in these galaxies was not precipitated by complete gas expulsion or redistribution. Rather, this high-resolution view of PSBs’ ISM indicates that star formation in their remaining compact gas reservoirs is suppressed by significant turbulent heating.  more » « less
Award ID(s):
2009416
PAR ID:
10366445
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
929
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 154
Size(s):
Article No. 154
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: Atacama Large Millimeter/submillimeter Array observations have shown that candidate “post-starburst” galaxies (PSBs) at z~0.6 can retain significant molecular gas reservoirs. These results would imply that—unlike many model predictions—galaxies can shut down their star formation before their cold gas reservoirs are depleted. However, these studies inferred star formation rates (SFRs) either from [OII] line fluxes or from spectral energy distribution (SED) modeling and could have missed large dust-obscured contributions to the SFRs. In this study, we present Keck/NIRES observations of 13 massive (M_* >= 10^11M_⊙) PSBs, which allow us to estimate Hα SFRs in these gas-rich PSBs. We confirm the previously inferred low SFRs for the majority of the sample: 11/13 targets show clear Hα absorption, with minimal infilling indicating dust-corrected SFRs of <4.1Msun/yr. These SFRs are notably low given the large H2 reservoirs (∼(1–5) × 10^10Msun) present in 5/13 of these galaxies, placing them significantly offset from star-forming galaxies on the Kennicutt–Schmidt relation for star-forming galaxies. The [NII]/Hα ratios of all 13 PSBs imply contributions from non-star-forming ionization mechanisms (e.g., active galactic nuclei, shocks, or hot evolved stars) to their Hα emission, suggesting that even these low ongoing SFRs may be overestimated. These low Hα SFRs, dust corrected using Av estimates from SED fitting, confirm that these galaxies are very likely quiescent and, thus, that galaxies can quench before their cold gas reservoirs are fully depleted. 
    more » « less
  2. The physical mechanisms that quench star formation, turning blue star-forming galaxies into red quiescent galaxies, remain unclear. In this Letter, we investigate the role of gas supply in suppressing star formation by studying the molecular gas content of post-starburst galaxies. Leveraging the wide area of the Sloan Digital Sky Survey, we identify a sample of massive intermediate-redshift galaxies that have just ended their primary epoch of star formation. We present Atacama Large Millimeter/submillimeter Array CO(2-1) observations of two of these post-starburst galaxies at z ˜ 0.7 with {M}* ˜ 2× {10}11 {M}⊙ . Their molecular gas reservoirs of (6.4+/- 0.8) × {10}9 {M}⊙ and (34.0+/- 1.6)× {10}9 {M}⊙ are an order of magnitude larger than comparable-mass galaxies in the local universe. Our observations suggest that quenching does not require the total removal or depletion of molecular gas, as many quenching models suggest. However, further observations are required both to determine if these apparently quiescent objects host highly obscured star formation and to investigate the intrinsic variation in the molecular gas properties of post-starburst galaxies. 
    more » « less
  3. Abstract We report the detection of 23 OH + 1 → 0 absorption, emission, or P-Cygni-shaped lines and CO( J = 9→8) emission lines in 18 Herschel-selected z = 2–6 starburst galaxies with the Atacama Large Millimeter/submillimeter Array and the NOrthern Extended Millimeter Array, taken as part of the Gas And Dust Over cosmic Time Galaxy Survey. We find that the CO( J = 9→8) luminosity is higher than expected based on the far-infrared luminosity when compared to nearby star-forming galaxies. Together with the strength of the OH + emission components, this may suggest that shock excitation of warm, dense molecular gas is more prevalent in distant massive dusty starbursts than in nearby star-forming galaxies on average, perhaps due to an impact of galactic winds on the gas. OH + absorption is found to be ubiquitous in massive high-redshift starbursts, and is detected toward 89% of the sample. The majority of the sample shows evidence for outflows or inflows based on the velocity shifts of the OH + absorption/emission, with a comparable occurrence rate of both at the resolution of our observations. A small subsample appears to show outflow velocities in excess of their escape velocities. Thus, starburst-driven feedback appears to be important in the evolution of massive galaxies in their most active phases. We find a correlation between the OH + absorption optical depth and the dust temperature, which may suggest that warmer starbursts are more compact and have higher cosmic-ray energy densities, leading to more efficient OH + ion production. This is in agreement with a picture in which these high-redshift galaxies are “scaled-up” versions of the most intense nearby starbursts. 
    more » « less
  4. Abstract We present results on the properties of extreme gas outflows in massive (M*∼ 1011M), compact, starburst (star formation rate, SFR∼ 200Myr−1) galaxies atz= 0.4–0.7 with very high star formation surface densities (ΣSFR∼ 2000Myr−1kpc−2). Using optical Keck/HIRES spectroscopy of 14 HizEA starburst galaxies, we identify outflows with maximum velocities of 820–2860 km s−1. High-resolution spectroscopy allows us to measure precise column densities and covering fractions as a function of outflow velocity and characterize the kinematics and structure of the cool gas outflow phase (T∼ 104K). We find substantial variation in the absorption profiles, which likely reflects the complex morphology of inhomogeneously distributed, clumpy gas and the intricacy of the turbulent mixing layers between the cold and hot outflow phases. There is not a straightforward correlation between the bursts in the galaxies’ star formation histories and their wind absorption line profiles, as might naively be expected for starburst-driven winds. The lack of strong Mgiiabsorption at the systemic velocity is likely an orientation effect, where the observations are down the axis of a blowout. We infer high mass outflow rates of ∼50–2200Myr−1, assuming a fiducial outflow size of 5 kpc, and mass loading factors ofη∼ 5 for most of the sample. While these values have high uncertainties, they suggest that starburst galaxies are capable of ejecting very large amounts of cool gas that will substantially impact their future evolution. 
    more » « less
  5. We present spatially-resolved rest-frame optical emission line maps of four galaxies at z∼2 observed with Keck/OSIRIS to study the physical conditions of the ISM at Cosmic Noon. Our analysis of strong emission line ratios in these galaxies reveals an offset from the local star-forming locus on the BPT diagram, but agrees with other star-forming galaxies at similar redshifts. Despite the offset towards higher [O III]λ5008/Hβ and [N II]λ6585/Hα, these strong-line ratios remain consistent with or below the maximum starburst threshold even in the inner ∼1 kpc region of the galaxies, providing no compelling evidence for central AGN activity. The galaxies also exhibit flat radial gas-phase metallicity gradients, consistent with previous studies of z∼2 galaxies and suggesting efficient radial mixing possibly driven by strong outflows from intense star formation. Overall, our results reveal the highly star-forming nature of these galaxies, with the potential to launch outflows that flatten metallicity gradients through significant radial gas mixing. Future observations with JWST/NIRSpec are crucial to detect fainter emission lines at higher spatial resolution to further constrain the physical processes and ionization mechanisms that shape the ISM during Cosmic Noon. 
    more » « less