skip to main content

Title: After The Fall: Resolving the Molecular Gas in Post-starburst Galaxies

Post-starburst (PSB), or “E + A,” galaxies represent a rapid transitional phase between major, gas-rich mergers and gas-poor, quiescent, early-type galaxies. Surprisingly, many PSBs have been shown to host a significant interstellar medium (ISM), despite theoretical predictions that the majority of the star-forming gas should be expelled in active galactic nuclei– or starburst-driven outflows. To date, the resolved properties of this surviving ISM have remained unknown. We present high-resolution ALMA continuum and CO(2–1) observations in six gas- and dust-rich PSBs, revealing for the first time the spatial and kinematic structure of their ISM on sub-kpc scales. We find extremely compact molecular reservoirs, with dust and gas surface densities rivaling those found in (ultra)luminous infrared galaxies. We observe spatial and kinematic disturbances in all sources, with some also displaying disk-like kinematics. Estimates of the internal turbulent pressure in the gas exceed those of normal star-forming disks by at least 2 orders of magnitude, and rival the turbulent gas found in local interacting galaxies, such as the Antennae. Though the source of this high turbulent pressure remains uncertain, we suggest that the high incidence of tidal disruption events in PSBs could play a role. The star formation in these PSBs’ turbulent central molecular reservoirs is suppressed, forming stars only 10% as efficiently as starburst galaxies with similar gas surface densities. “The fall” of star formation in these galaxies was not precipitated by complete gas expulsion or redistribution. Rather, this high-resolution view of PSBs’ ISM indicates that star formation in their remaining compact gas reservoirs is suppressed by significant turbulent heating.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Medium: X Size: Article No. 154
["Article No. 154"]
Sponsoring Org:
National Science Foundation
More Like this

    We analysed the high-resolution (up to ∼0.2 arcsec) ALMA CO (2–1) and 1.3 mm dust continuum data of eight gas-rich post-starburst galaxies (PSBs) in the local Universe, six of which had been studied by a recent work. In contrast to this study reporting the detections of extraordinarily compact (i.e. unresolved) reservoirs of molecular gas in the six PSBs, our visibility-plane analysis resolves the CO (2–1) emission in all eight PSBs with effective radii (Re, CO) of $0.8_{-0.4}^{+0.9}$ kpc, typically consisting of gaseous components at both circumnuclear and extended disc scales. With this new analysis, we find that the CO sizes of gas-rich PSBs are compact with respect to their stellar sizes (median ratio $=0.43_{-0.21}^{+0.27}$), but comparable to the sizes of the gas discs seen in local luminous infrared galaxies (LIRGs) and early-type galaxies. We also find that the CO-to-stellar size ratio of gas-rich PSBs is potentially correlated with the gas depletion time-scale, placing them as transitional objects between LIRGs and early-type galaxies from an evolutionary perspective. Finally, the star formation efficiency of the observed PSBs appear consistent with those of star-forming galaxies on the Kennicutt–Schmidt relation, showing no sign of suppressed star formation from turbulent heating.

    more » « less

    We present a study of the molecular gas of seven early-type galaxies with high angular resolution data obtained as part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project with the Atacama Large Millimeter/submillimeter Array. Using a fixed spatial-scale approach, we study the mass surface density (Σ) and velocity dispersion (σ) of the molecular gas on spatial scales ranging from 60 to 120 pc. Given the spatial resolution of our data (20–70 pc), we characterize these properties across many thousands of individual sightlines (≈50 000 at our highest physical resolution). The molecular gas along these sightlines has a large range (≈2 dex) of mass surface densities and velocity dispersions $\approx 40~{{\ \rm per\ cent}}$ higher than those of star-forming spiral galaxies. It has virial parameters αvir that depend weakly on the physical scale observed, likely due to beam smearing of the bulk galactic rotation, and is generally supervirial. Comparing the internal turbulent pressure (Pturb) to the pressure required for dynamic equilibrium (PDE), the ratio Pturb/PDE is significantly less than unity in all galaxies, indicating that the gas is not in dynamic equilibrium and is strongly compressed, in apparent contradiction to the virial parameters. This may be due to our neglect of shear and tidal forces, and/or the combination of three-dimensional and vertical diagnostics. Both αvir and Pturb anticorrelate with the global star-formation rate of our galaxies. We therefore conclude that the molecular gas in early-type galaxies is likely unbound, and that large-scale dynamics likely plays a critical role in its regulation. This contrasts to the giant molecular clouds in the discs of late-type galaxies, that are much closer to dynamical equilibrium.

    more » « less
  3. Abstract We report new observations toward the hyperluminous dusty starbursting major merger ADFS-27 ( z  = 5.655), using the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). We detect CO ( J  = 2 → 1), CO ( J  = 8 → 7), CO ( J  = 9 → 8), CO ( J  = 10 → 9), and H 2 O (3 12  → 2 21 ) emission, and a P Cygni−shaped OH + (1 1  → 0 1 ) absorption/emission feature. We also tentatively detect H 2 O (3 21  → 3 12 ) and OH + (1 2 → 0 1 ) emission and CH + ( J  = 1 → 0) absorption. We find a total cold molecular mass of M gas  = (2.1 ± 0.2) × 10 11 ( α CO /1.0) M ⊙ . We also find that the excitation of the star-forming gas is overall moderate for a z > 5 dusty starburst, which is consistent with its moderate dust temperature. A high-density, high kinetic temperature gas component embedded in the gas reservoir is required to fully explain the CO line ladder. This component is likely associated with the “maximum starburst” nuclei in the two merging galaxies, which are separated by only 140 ± 13 km s −1 along the line of sight and 9.0 kpc in projection. The kinematic structure of both components is consistent with galaxy disks, but this interpretation remains limited by the spatial resolution of the current data. The OH + features are only detected toward the northern component, which is also the one that is more enshrouded in dust and thus remains undetected up to 1.6 μ m even in our sensitive new Hubble Space Telescope Wide Field Camera 3 imaging. The absorption component of the OH + line is blueshifted and peaks near the CO and continuum emission peak, while the emission is redshifted and peaks offset by 1.7 kpc from the CO and continuum emission peak, suggesting that the gas is associated with a massive molecular outflow from the intensely star-forming nucleus that supplies 125 M ⊙ yr −1 of enriched gas to its halo. 
    more » « less
  4. Abstract We report the detection of 23 OH + 1 → 0 absorption, emission, or P-Cygni-shaped lines and CO( J = 9→8) emission lines in 18 Herschel-selected z = 2–6 starburst galaxies with the Atacama Large Millimeter/submillimeter Array and the NOrthern Extended Millimeter Array, taken as part of the Gas And Dust Over cosmic Time Galaxy Survey. We find that the CO( J = 9→8) luminosity is higher than expected based on the far-infrared luminosity when compared to nearby star-forming galaxies. Together with the strength of the OH + emission components, this may suggest that shock excitation of warm, dense molecular gas is more prevalent in distant massive dusty starbursts than in nearby star-forming galaxies on average, perhaps due to an impact of galactic winds on the gas. OH + absorption is found to be ubiquitous in massive high-redshift starbursts, and is detected toward 89% of the sample. The majority of the sample shows evidence for outflows or inflows based on the velocity shifts of the OH + absorption/emission, with a comparable occurrence rate of both at the resolution of our observations. A small subsample appears to show outflow velocities in excess of their escape velocities. Thus, starburst-driven feedback appears to be important in the evolution of massive galaxies in their most active phases. We find a correlation between the OH + absorption optical depth and the dust temperature, which may suggest that warmer starbursts are more compact and have higher cosmic-ray energy densities, leading to more efficient OH + ion production. This is in agreement with a picture in which these high-redshift galaxies are “scaled-up” versions of the most intense nearby starbursts. 
    more » « less
  5. Abstract

    We present results on the properties of extreme gas outflows in massive (M*∼ 1011M), compact, starburst (star formation rate, SFR∼ 200Myr−1) galaxies atz= 0.4–0.7 with very high star formation surface densities (ΣSFR∼ 2000Myr−1kpc−2). Using optical Keck/HIRES spectroscopy of 14 HizEA starburst galaxies, we identify outflows with maximum velocities of 820–2860 km s−1. High-resolution spectroscopy allows us to measure precise column densities and covering fractions as a function of outflow velocity and characterize the kinematics and structure of the cool gas outflow phase (T∼ 104K). We find substantial variation in the absorption profiles, which likely reflects the complex morphology of inhomogeneously distributed, clumpy gas and the intricacy of the turbulent mixing layers between the cold and hot outflow phases. There is not a straightforward correlation between the bursts in the galaxies’ star formation histories and their wind absorption line profiles, as might naively be expected for starburst-driven winds. The lack of strong Mgiiabsorption at the systemic velocity is likely an orientation effect, where the observations are down the axis of a blowout. We infer high mass outflow rates of ∼50–2200Myr−1, assuming a fiducial outflow size of 5 kpc, and mass loading factors ofη∼ 5 for most of the sample. While these values have high uncertainties, they suggest that starburst galaxies are capable of ejecting very large amounts of cool gas that will substantially impact their future evolution.

    more » « less