Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s.more » « less
-
Abstract Earth's core has produced a global magnetic field for at least the last 3.5 Gyrs, presently sustained by inner core (IC) growth. Models of the core with high thermal conductivity suggest potentially insufficient power available for the geodynamo prior to IC formation ∼1 Ga. Precipitation of silicon from the liquid core might offer an alternative power source for the ancient magnetic field, although few estimates of the silicon partition coefficient exist for conditions of the early core. We present the first ab initio determination of the silicon partition coefficient at core‐mantle boundary conditions and use these results to confirm a thermodynamic description of partitioning that is integrated into a model of coupled core‐mantle thermal evolution. We show that models including precipitation of silicon can satisfy constraints of IC size, mantle convective heat flux, mantle temperature and a persistent ancient geodynamo, and favor an oxygen poor initial core composition.more » « less
-
Abstract We present a joint experimental‐modeling investigation of core cooling in small terrestrial bodies. Significant amounts of light elements (S, O, Mg, Si) may compose the metallic cores of terrestrial planets and moons. However, the effect of multiple light elements on transport properties, in particular, electrical resistivity and thermal conductivity, is not well constrained. Electrical experiments were conducted at 10 GPa and up to 1850 K on high‐purity powder mixtures in the Fe‐S‐O(±Mg, ±Si) systems using the multianvil apparatus and the four‐electrode technique. The sample compositions contained 5 wt.% S, up to 3 wt.% O, up to 2 wt.% Mg, and up to 1 wt.% Si. We observe that above the eutectic temperature, electrical resistivity is significantly sensitive to the nature and amount of light elements. For each composition, thermal conductivity‐temperature equations were estimated using the experimental electrical results and a modified Wiedemann‐Franz law. These equations were implemented in a thermochemical core cooling model to study the evolution of the dynamo. Modeling results suggest that bulk chemistry significantly affects the entropy available to power dynamo action during core cooling. In the case of Mars, the presence of oxygen would delay the dynamo cessation by up to 1 Gyr compared to an O‐free, Fe‐S core. Models with 3 wt% O can be reconciled with the inferred cessation time of the Martian dynamo if the core‐mantle boundary heat flow falls from >2 TW to ~0.1 TW in the first 0.5 Gyr following core formation.more » « less
-
Abstract Electrical resistivity experiments were conducted on three alloys in the iron-rich side of the Fe-Ni(-S) system (Fe-5 wt% Ni, Fe-10 wt% Ni, Fe-10 wt% Ni-5 wt% S) at 4.5 and 8 GPa and up to 1900 K using the multi-anvil apparatus and the 4-electrode technique. For all samples, increasing temperature increases resistivity. At a specified temperature, Fe-Ni(-S) alloys are more resistive than Fe by a factor of about 3. Fe-Ni alloys containing 5 and 10 wt% Ni present comparable electrical resistivity values. The resistivity of Fe-Ni(-S) alloys is comparable to the one of Fe = 5 wt% S at 4.5 GPa and is about three times higher than the resistivity of Fe = 5 wt% S at 8 GPa, due to a different pressure dependence of electrical resistivity between Fe-Ni and Fe-S alloys. Based on these electrical results and experimentally determined thermal conductivity values from the literature, lower and upper bounds of thermal conductivity were calculated. For all Ni-bearing alloys, thermal conductivity estimates range between ~12 and 20 W/(m⋅K) over the considered pressure and temperature ranges. Adiabatic heat fluxes were computed for both Ganymede's core and the Lunar core, and heat flux values suggest a significant dependence to both core composition and the adiabatic temperature. Comparison with previous thermochemical models of the cores of Ganymede and the Moon suggests that some studies may have overestimated the thermal conductivity and hence, the heat flux along the adiabat in these planetary cores.more » « less
-
An outstanding goal in planetary science is to understand how terrestrial cores evolved to have the compositions, thermal properties, and magnetic fields observed today. To achieve that aim requires the integration of datasets from space missions with laboratory experiments conducted at high pressures and temperatures. Over the past decade, technological advances have enhanced the capability to conductin situmeasurements of physical properties on samples that are analogs to planetary cores. These challenging experiments utilize large-volume presses that optimize control of pressure and temperature, and diamond-anvil cells to reach the highest pressures. In particular, the current experimental datasets of density, compressional velocity, viscosity, and thermal conductivity of iron alloys are most relevant to the core conditions of small terrestrial planets and moons. Here we review the physical properties of iron alloys measured in the laboratory at conditions relevant to the cores of Mars, the Moon, and Mercury. We discuss how these properties inform models of core composition, as well as thermal and magnetic evolution of their cores. Experimental geochemistry (in particular, metal-silicate partitioning experiments) provides additional insights into the nature and abundance of light elements within cores, as well as crystallization processes. Emphasis is placed on the Martian core to discuss the effect of chemistry on core evolution.more » « less
An official website of the United States government
