skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Equilibrium of Self‐Formed, Single‐Thread, Sand‐Bed Rivers
Abstract Equilibrium geometry of single‐thread rivers with fixed width (engineered rivers) is determined with a flow resistance relation and a sediment transport relation, if characteristic discharge, sediment caliber and supply are specified. In self‐formed channels, however, channel width is not imposed, and one more relation is needed to predict equilibrium geometry. Specifying this relation remains an open problem. Here we present a new model that brings together a coherent train of research progress over 35 years to predict equilibrium geometry of single‐thread rivers from the conservation of channel and floodplain material. Predicted channel geometries are comparable with field observations. In response to increasing floodplain width, sand load and grain size, the equilibrium slope increases, bankfull depth and width decrease. As the volume fraction content of mud in the sediment load increases, bankfull width‐to‐depth ratio and slope decrease suggesting that mud load has a strong control on channel patterns and bankfull geometry.  more » « less
Award ID(s):
1751926
PAR ID:
10366647
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flow regime, sediment supply and base level control geometry and evolution of alluvial channels and floodplains. Single thread rivers subject to constant forcing can reach equi-librium conditions in which the amount of sediment deposited on the floodplain through point bar deposition and overbank sedimentation is balanced by erosion of floodplain sed-iment through channel migration. At equilibrium, floodplain slope and sediment size dis-tribution, reach-averaged channel geometry (width and depth) and channel migration rates do not change in time. In response to changes in sediment supply and floodplain width, channel geometry and migration rate, floodplain slope and size distribution are expected to evolve in space and time. Predicting this response remains an open problem for geoscien-tists and engineers. Here we use an equilibrium solution of a 1D morphodynamic frame-work of channel-floodplain evolution to investigate how equilibrium conditions change as a function of sediment supply and floodplain width. Sediment is modeled here as a mix-ture of two grain sizes, sand and mud. Channel migration rate and width are functions of near-bank flow properties and floodplain characteristics. We zero the model using input parameters based on the pre-1930 ~ reach of the Minnesota River from Mankato to Jordan, USA, where data is available for proper field scale model verification. We then use the validated model to quantify the long-term (equilibrium) response of the schematic reach to changes in sediment supply magnitude and size distribution, as well as to changes in floodplain width. 
    more » « less
  2. Flow regime, sediment supply and base level control geometry and evolution of alluvial channels and floodplains. Single thread rivers subject to constant forcing can reach equi-librium conditions in which the amount of sediment deposited on the floodplain through point bar deposition and overbank sedimentation is balanced by erosion of floodplain sed-iment through channel migration. At equilibrium, floodplain slope and sediment size dis-tribution, reach-averaged channel geometry (width and depth) and channel migration rates do not change in time. In response to changes in sediment supply and floodplain width, channel geometry and migration rate, floodplain slope and size distribution are expected to evolve in space and time. Predicting this response remains an open problem for geoscien-tists and engineers. Here we use an equilibrium solution of a 1D morphodynamic frame-work of channel-floodplain evolution to investigate how equilibrium conditions change as a function of sediment supply and floodplain width. Sediment is modeled here as a mix-ture of two grain sizes, sand and mud. Channel migration rate and width are functions of near-bank flow properties and floodplain characteristics. We zero the model using input parameters based on the pre-1930 ~ reach of the Minnesota River from Mankato to Jordan, USA, where data is available for proper field scale model verification. We then use the validated model to quantify the long-term (equilibrium) response of the schematic reach to changes in sediment supply magnitude and size distribution, as well as to changes in floodplain width. 
    more » « less
  3. Abstract Reconstruction of active channel geometry from fluvial strata is critical to constrain the water and sediment fluxes in ancient terrestrial landscapes. Robust methods—grounded in extensive field observations, numerical simulations, and physical experiments—exist for estimating the bankfull flow depth and channel-bed slope from preserved deposits; however, we lack similar tools to quantify bankfull channel widths. We combined high-resolution lidar data from 134 meander bends across 11 rivers that span over two orders of magnitude in size to develop a robust, empirical relation between the bankfull channel width and channel-bar clinoform width (relict stratigraphic surfaces of bank-attached channel bars). We parameterized the bar cross-sectional shape using a two-parameter sigmoid, defining bar width as the cross-stream distance between 95% of the asymptotes of the fit sigmoid. We combined this objective definition of the bar width with Bayesian linear regression analysis to show that the measured bankfull flow width is 2.34 ± 0.13 times the channel-bar width. We validated our model using field measurements of channel-bar and bankfull flow widths of meandering rivers that span all climate zones (R2 = 0.79) and concurrent measurements of channel-bar clinoform width and mud-plug width in fluvial strata (R2 = 0.80). We also show that the transverse bed slopes of bars are inversely correlated with bend curvature, consistent with theory. Results provide a simple, usable metric to derive paleochannel width from preserved bar clinoforms. 
    more » « less
  4. Abstract A Silurian shift in fluvial stratigraphic architecture, coincident with the appearance of terrestrial vegetation in the fossil record, is traditionally cited as evidence for exclusively shallow, braided planforms in pre‐vegetation rivers. While recent recognition of deep, single‐thread channels in pre‐Silurian strata challenge this paradigm, it is unclear how these rivers maintained stable banks. Here, we reconstruct paleohydraulics and channel planform from fluvial cross‐strata of the 1.2 Ga Stoer Group. These deposits are consistent with deep (4–7 m), low‐sloping rivers (2.7 × 10−4to 4.5 × 10−5), similar in morphometry to modern single‐thread rivers. We show that reconstructed bank shear stresses approximate the cohesion provided by sand‐mud mixtures with 30%–45% mud—consistent with Stoer floodplain facies composition. These results indicate that sediment cohesion from mud alone could have fostered deep, single‐thread, pre‐vegetation rivers. We suggest that the Silurian stratigraphic shift could mark a kinematic change in channel migration rate rather than a diversification of planform. 
    more » « less
  5. Abstract During a flood, the geometry of a river channel constrains the flows of water and sediment, however, over many floods, bankfull channel geometry evolves to reflect the longer‐term fluxes of water and sediment supplied by the catchment. Physics‐based models predict the average relationship between bankfull geometry and discharge to within an order of magnitude, however, observed variability about the prediction remains unaccounted for. We used high‐resolution topography to extract continuous measurements of bankfull width from 67 sites spanning the continental United States, yielding a reach‐scale probabilistic description of river width for each site. Within an individual reach, bankfull river width is well‐described by a lognormal distribution. Rivers that spend a greater proportion of time above bankfull are wider for the same bankfull discharge, revealing an unrecognized pathway through which climatic or engineered changes in flow frequency could alter river geometry and therefore impact aquatic habitat and flooding risk. 
    more » « less