skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How Does Coastal Gravel Get Sorted Under Stormy Longshore Transport?
Abstract Storm waves transport and sort coarse gravel along coasts. This fundamental process is important under changing sea‐levels and increased storm frequency and intensity. However, limited information on intra‐storm clast motion restricts theory development for coastal gravel sorting and coastal management of longshore transport. Here, we use smart boulders equipped with loggers recording underwater, real‐time, intra‐storm clast motion, and measured longshore displacement of varied‐mass marked boulders during storms. We utilize the unique setting of the Dead Sea shores where rapidly falling water levels allow isolating boulder transport during individual storms. Guided by these observations, we develop a new model quantifying the critical wave height for a certain clast mass mobilization. Then, we obtain an expression for the longshore clast displacement under the fluid‐induced pressure impulse of a given wave. Finally, we formulate the sorting enforced by wave‐height distributions during a storm, demonstrating how sorting is a direct manifestation of regional hydroclimatology.  more » « less
Award ID(s):
1936258
PAR ID:
10366659
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coastal boulder deposits (CBD) provide what are sometimes the only remaining signatures of wave inundation on rocky coastlines; in recent decades, CBD combined with initiation of motion (IoM) analyses have repeatedly been used as primary evidence to infer the existence of ancient tsunamis. However, IoM storm wave heights inferred by these studies have been shown to be highly inaccurate, bringing some inferences into question. This work develops a dimensionless framework to relate CBD properties with storm‐wave hindcasts and measurements, producing data‐driven relations between wave climate and boulder properties. We present an elevation‐density‐size‐inland distance‐wave height analysis for individual storm‐transported boulders which delineates the dynamic space where storm‐wave CBD occur. Testing these new relations against presumed tsunami CBD demonstrates that some fall well within the capabilities of storm events, suggesting that some previous studies might be fruitfully reexamined within the context of this new framework. 
    more » « less
  2. Tropical Storm Eta impacted the coast of west-central Florida from 11 November to 12 November 2020 and generated high waves over elevated water levels for over 20 hours. A total of 148 beach and nearshore profiles, spaced about 300 m (984 ft) apart, were surveyed one to two weeks before and one to eight days after the storm to examine the beach changes along four barrier islands, including Sand Key, Treasure Island, Long Key, and Mullet Key. The high storm waves superimposed on elevated water level reached the toe of dunes or seawalls and caused dune erosion and overwash at various places. Throughout most of the coast, the dune, dry beach, and nearshore area was eroded and most of the sediment was deposited on the seaward slope of the nearshore bar, resulting in a roughly conserved sand volume above closure depth. The longshore variation of beach-profile volume loss demonstrates an overall southward decreasing trend, mainly due to a southward decreasing nearshore wave height as controlled by offshore bathymetry and shoreline configurations. The Storm Erosion Index (SEI) developed by Miller and Livermont (2008) captured the longshore variation of beach-profile volume loss reasonably well. The longshore variation of breaking wave height is the dominant factor controlling the longshore changes of SEI and beach erosion. Temporal variation of water level also played a significant role, while beach berm elevation was a minor factor. Although wider beaches tended to experience more volume loss from TS Eta due to the availability of sediment, they were effective in protecting the back beach and dune area from erosion. On the other hand, smaller profile-volume loss from narrow beach did not necessarily relate to less dune/ structure damage. The opposite is often true. Accurate evaluation of a storm’s severity in terms of erosion potential would benefit beach management especially under the circumstance of increasing storm activities due to climate change. 
    more » « less
  3. Coastal jetties are commonly used throughout the world to stabilize channels and improve navigation through inlets. These engineered structures form artificial boundaries to littoral cells by reducing wave-driven longshore sediment transport across inlet entrances. Consequently, beaches adjacent to engineered inlets are subject to large gradients in longshore transport rates and are highly sensitive to changes in wave climate. Here, we quantify annual beach and nearshore sediment volume changes over a 9-yr time period along 80 km of wave- dominated coastlines in the U.S. Pacific Northwest. Beach and nearshore monitoring during the study period (2014–2023) reveal spatially coherent, multi-annual patterns of erosion and deposition on opposing sides of two engineered inlets, indicating a regional reversal of longshore-transport direction. A numerical wave model coupled with a longshore transport predictor was calibrated and validated to explore the causes for the observed spatial and temporal patterns of erosion and deposition adjacent to the inlets. The model results indicate that subtle but important changes in wave direction on seasonal to multi-annual time scales were responsible for the reversal in the net longshore sediment transport direction and opposing patterns of morphology change. Changes in longshore transport direction coincided with a reversal in the Pacific Decadal Oscillation (PDO) climate index, suggesting large-scale, multi-decadal climate variability may influence patterns of waves and sediment dynamics at other sites throughout the Pacific basin. 
    more » « less
  4. Abstract. Rising seas are a threat to human and natural systems along coastlines. The relation between global warming and sea level rise is established, but the quantification of impacts of historical sea level rise on a global scale is largely absent. To foster such quantification, here we present a reconstruction of historical hourly (1979–2015) and monthly (1900–2015) coastal water levels and a corresponding counterfactual without long-term trends in sea level. The dataset pair allows for impact attribution studies that quantify the contribution of sea level rise to observed changes in coastal systems following the definition of the Intergovernmental Panel on Climate Change (IPCC). Impacts are ultimately caused by water levels that are relative to the local land height, which makes the inclusion of vertical land motion a necessary step. Also, many impacts are driven by sub-daily extreme water levels. To capture these aspects, the factual data combine reconstructed geocentric sea level on a monthly timescale since 1900, vertical land motion since 1900 and hourly storm-tide variations since 1979. The inclusion of observation-based vertical land motion brings the trends of the combined dataset closer to tide gauge records in most cases, but outliers remain. Daily maximum water levels get in closer agreement with tide gauges through the inclusion of intra-annual ocean density variations. The counterfactual data are derived from the factual data through subtraction of the quadratic trend. The dataset is made available openly through the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) at https://doi.org/10.48364/ISIMIP.749905 (Treu et al., 2023a). 
    more » « less
  5. Two sessions were organized during the 2018 Fall AGU Meeting entitled, (1) Coastal Response to Extreme Events: Fidelity of Model Predictions of Surge, Inundation, and Morphodynamics and (2) Improved Observational and Modeling Skills to Understand the Hurricane and Winter Storm Induced Surge and Meteotsunami. The focus of these sessions was on examining the impact of natural disasters on estuarine and coastal regions worldwide, including the islands and mainland in the northwestern Atlantic and the northwestern Pacific. The key research interests are the investigations on the regional dynamics of storm surges, coastal inundations, waves, tides, currents, sea surface temperatures, storm inundations and coastal morphology using both numerical models and observations during tropical and extratropical cyclones. This Special Issue (SI) ‘Estuarine and coastal natural hazards’ in Estuarine Coastal and Shelf Science is an outcome of the talks presented at these two sessions. Five themes are considered (effects of storms of wave dynamics; tide and storm surge simulations; wave-current interaction during typhoons; wave effects on storm surges and hydrodynamics; hydrodynamic and morphodynamic responses to typhoons), arguably reflecting areas of greatest interest to researchers and policy makers. This synopsis of the articles published in the SI allows us to obtain a better understanding of the dynamics of natural hazards (e.g., storm surges, extreme waves, and storm induced inundation) from various physical aspects. The discussion in the SI explores future dimensions to comprehend numerical models with fully coupled windwave- current-morphology interactions at high spatial resolutions in the nearshore and surf zone during extreme wind events. In addition, it would be worthwhile to design numerical models incorporating climate change projections (sea level rise and global warming temperatures) for storm surges and coastal inundations to allow more precisely informed coastal zone management plans. 
    more » « less