Water levels in deltas and estuaries vary on multiple timescales due to coastal, hydrologic, meteorologic, geologic, and anthropogenic factors. These diverse factors increase the uncertainty of, and may bias, relative sea level rise (RSLR) estimates. Here, we evaluate RSLR in San Francisco Bay and the Sacramento-San Joaquin Delta, USA by applying a physics-based, nonlinear regression to 50 tide gauges that determines the spatially varying controls on daily mean water level for water years 2004–2022. Results show that elevated river flow and pumping (99th percentile) raise water level up to 6 m and lower it up to 0.35 m, respectively, and coastal water level variations are attenuated by 30-60% within the Delta. Strong westerly winds raise water level up to 0.17 m, and tidal-fluvial interaction during spring tides and low discharge raises water level up to 0.15 m. Removal of these interfering factors greatly improves RSLR estimates, narrowing 95% confidence intervals by 89–99% and removing bias due to recent drought. Results show that RSLR is spatially heterogeneous, with rates ranging from − 2.8 to 12.9 mm y-1(95% uncertainties < 1 mm y-1). RSLR also exceeds coastal SLR of 3.3 mm y-1in San Francisco at 85% of stations. Thus, RSLR in the Delta is strongly influenced by local vertical land motion and will likely produce significantly different, location-dependent future flood risk trajectories.
Abstract. Rising seas are a threat to human and natural systems along coastlines. The relation between global warming and sea level rise is established, but the quantification of impacts of historical sea level rise on a global scale is largely absent. To foster such quantification, here we present a reconstruction of historical hourly (1979–2015) and monthly (1900–2015) coastal water levels and a corresponding counterfactual without long-term trends in sea level. The dataset pair allows for impact attribution studies that quantify the contribution of sea level rise to observed changes in coastal systems following the definition of the Intergovernmental Panel on Climate Change (IPCC). Impacts are ultimately caused by water levels that are relative to the local land height, which makes the inclusion of vertical land motion a necessary step. Also, many impacts are driven by sub-daily extreme water levels. To capture these aspects, the factual data combine reconstructed geocentric sea level on a monthly timescale since 1900, vertical land motion since 1900 and hourly storm-tide variations since 1979. The inclusion of observation-based vertical land motion brings the trends of the combined dataset closer to tide gauge records in most cases, but outliers remain. Daily maximum water levels get in closer agreement with tide gauges through the inclusion of intra-annual ocean density variations. The counterfactual data are derived from the factual data through subtraction of the quadratic trend. The dataset is made available openly through the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) at https://doi.org/10.48364/ISIMIP.749905 (Treu et al., 2023a).
more » « less- PAR ID:
- 10541230
- Publisher / Repository:
- EGU
- Date Published:
- Journal Name:
- Earth System Science Data
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 1866-3516
- Page Range / eLocation ID:
- 1121 to 1136
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Relative sea level rise at tide gauge Galveston Pier 21, Texas, is the combination of absolute sea level rise and land subsidence. We estimate subsidence rates of 3.53 mm/a during 1909–1937, 6.08 mm/a during 1937–1983, and 3.51 mm/a since 1983. Subsidence attributed to aquifer-system compaction accompanying groundwater extraction contributed as much as 85% of the 0.7 m relative sea level rise since 1909, and an additional 1.9 m is projected by 2100, with contributions from land subsidence declining from 30 to 10% over the projection interval. We estimate a uniform absolute sea level rise rate of 1.10 mm ± 0.19/a in the Gulf of Mexico during 1909–1992 and its acceleration of 0.270 mm/a2at Galveston Pier 21 since 1992. This acceleration is 87% of the value for the highest scenario of global mean sea level rise. Results indicate that evaluating this extreme scenario would be valid for resource-management and flood-hazard-mitigation strategies for coastal communities in the Gulf of Mexico, especially those affected by subsidence.
-
Abstract Tide gauge water levels are commonly used as a proxy for flood incidence on land. These proxies are useful for projecting how sea‐level rise (SLR) will increase the frequency of coastal flooding. However, tide gauges do not account for land‐based sources of coastal flooding and therefore flood thresholds and the proxies derived from them likely underestimate the current and future frequency of coastal flooding. Here we present a new sensor framework for measuring the incidence of coastal floods that captures both subterranean and land‐based contributions to flooding. The low‐cost, open‐source sensor framework consists of a storm drain water level sensor, roadway camera, and wireless gateway that transmit data in real‐time. During 5 months of deployment in the Town of Beaufort, North Carolina, 24 flood events were recorded. Twenty‐five percent of those events were driven by land‐based sources—rainfall, combined with moderate high tides and reduced capacity in storm drains. Consequently, we find that flood frequency is higher than that suggested by proxies that rely exclusively on tide gauge water levels for determining flood incidence. This finding likely extends to other locations where stormwater networks are at a reduced drainage capacity due to SLR. Our results highlight the benefits of instrumenting stormwater networks directly to capture multiple drivers of coastal flooding. More accurate estimates of the frequency and drivers of floods in low‐lying coastal communities can enable the development of more effective long‐term adaptation strategies.
-
Abstract Few tidal records are available pre‐1900 for the Pacific Ocean. We improve data coverage by recovering historical tabulations and digitizing analog tide rolls from Astoria, Oregon, for 1853–1876. Nearly 13,500 overlapping images of tides from 1855–1870 were digitized at a 6 min resolution using a line‐finding algorithm. Available hourly and high/low tabulations were also digitized, as were nearby hourly records from 1933 to 1943. Uncertainty was assessed by evaluating manual staff measurements, historical documents, and leveling surveys. Results suggest that uncertainty in mean sea level varies from ±0.07 m (early 1850s) to ±0.03 m (1867–1876) and is driven primarily by datum and benchmark uncertainty, rather than measurement precision, data reduction procedures, or hydrodynamic changes. We also corrected an up‐to 0.05 m error in the 1925–1960 tidal datum at Astoria. Harmonic analysis shows that major tidal constituents increased by up to 7% between 1855 and 2018. Mean tidal range increased by 0.1 m (5%), with more change occurring in July (0.17 m larger) than winter (0.07 m larger). By contrast, sea level increased most in winter and least in spring/summer. Tidally based estimates of river discharge suggest that these observations are caused by a ~50% reduction in peak spring discharge and a 30–60% increase in winter discharge. No evidence of altered upwelling is found. Overall, Astoria relative sea level (RSL) increased by 0.06 m ± 0.04 m since the 1858–1876 epoch or, after accounting for vertical land motion, 0.11 ± 0.09 m. Consistent with GNSS measurements, RSL has dropped near the estuary mouth since 1905, indicating a strong tectonic influence.
-
NA (Ed.)
Coastal wetlands are vulnerable to accelerated sea-level rise, yet knowledge about their extent and distribution is often limited. We developed a land cover classification of wetlands in the coastal plains of the southern United States along the Gulf of Mexico (Texas, Louisiana, Mississippi, Alabama, and Florida) using 6161 very-high (2 m per pixel) resolution WorldView-2 and WorldView-3 satellite images from 2012 to 2015. Area extent estimations were obtained for the following vegetated classes: marsh, scrub, grass, forested upland, and forested wetland, located in elevation brackets between 0 and 10 m above sea level at 0.1 m intervals. Sea-level trends were estimated for each coastal state using tide gauge data collected over the period 1983–2021 and projected for 2100 using the trend estimated over that period. These trends were considered conservative, as sea level rise in the region accelerated between 2010 and 2021. Estimated losses in vegetation area due to sea level rise by 2100 are projected to be at least 12,587 km2, of which 3224 km2 would be coastal wetlands. Louisiana is expected to suffer the largest losses in vegetation (80%) and coastal wetlands (75%) by 2100. Such high-resolution coastal mapping products help to guide adaptation plans in the region, including planning for wetland conservation and coastal development.