skip to main content

Title: Characterising the orbit and circumstellar environment of the high-mass binary MWC 166 A
Context. Stellar evolution models are highly dependent on accurate mass estimates, especially for highly massive stars in the early stages of stellar evolution. The most direct method for obtaining model-independent stellar masses is derivation from the orbit of close binaries. Aims. Our aim was to derive the first astrometric plus radial velocity orbit solution for the single-lined spectroscopic binary star MWC 166 A, based on near-infrared interferometry over multiple epochs and ∼100 archival radial velocity measurements, and to derive fundamental stellar parameters from this orbit. A supplementary aim was to model the circumstellar activity in the system from K band spectral lines. Methods. The data used include interferometric observations from the VLTI instruments GRAVITY and PIONIER, as well as the MIRC-X instrument at the CHARA Array. We geometrically modelled the dust continuum to derive relative astrometry at 13 epochs, determine the orbital elements, and constrain individual stellar parameters at five different age estimates. We used the continuum models as a base to examine differential phases, visibilities, and closure phases over the Br γ and He  I emission lines in order to characterise the nature of the circumstellar emission. Results. Our orbit solution suggests a period of P  = 367.7 ± 0.1 d, approximately twice as long as found with previous radial velocity orbit fits. We derive a semi-major axis of 2.61 ± 0.04 au at d  = 990 ± 50 pc, an eccentricity of 0.498 ± 0.001, and an orbital inclination of 53.6 ± 0.3°. This allowed the component masses to be constrained to M 1  = 12.2 ± 2.2  M ⊙ and M 2  = 4.9 ± 0.5  M ⊙ . The line-emitting gas was found to be localised around the primary and is spatially resolved on scales of ∼11 stellar radii, where the spatial displacement between the line wings is consistent with a rotating disc. Conclusions. The large spatial extent and stable rotation axis orientation measured for the Br γ and He  I line emission are inconsistent with an origin in magnetospheric accretion or boundary-layer accretion, but indicate an ionised inner gas disc around this Herbig Be star. We observe line variability that could be explained either with generic line variability in a Herbig star disc or V/R variations in a decretion disc scenario. We have also constrained the age of the system, with relative flux ratios suggesting an age of ∼(7 ± 2)×10 5 yr, consistent with the system being composed of a main-sequence primary and a secondary still contracting towards the main-sequence stage.  more » « less
Award ID(s):
1636624 1909165 1506540 2034336
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. We present a detailed visible and near-infrared spectro-interferometric analysis of the Be-shell star o Aquarii from quasi-contemporaneous CHARA/VEGA and VLTI/AMBER observations. Methods. We analyzed spectro-interferometric data in the H α (VEGA) and Br γ (AMBER) lines using models of increasing complexity: simple geometric models, kinematic models, and radiative transfer models computed with the 3D non-LTE code HDUST. Results. We measured the stellar radius of o Aquarii in the visible with a precision of 8%: 4.0 ± 0.3 R ⊙ . We constrained the circumstellar disk geometry and kinematics using a kinematic model and a MCMC fitting procedure. The emitting disk sizes in the H α and Br γ lines were found to be similar, at ~10–12 stellar diameters, which is uncommon since most results for Be stars indicate a larger extension in H α than in Br γ . We found that the inclination angle i derived from H α is significantly lower (~15°) than the one derived from Br γ : i ~ 61.2° and 75.9°, respectively. While the two lines originate from a similar region of the disk, the disk kinematics were found to be near to the Keplerian rotation (i.e., β = −0.5) in Br γ ( β ~ −0.43), but not in H α ( β ~ −0.30). After analyzing all our data using a grid of HDUST models (BeAtlas), we found a common physical description for the circumstellar disk in both lines: a base disk surface density Σ 0 = 0.12 g cm −2 and a radial density law exponent m = 3.0. The same kind of discrepancy, as with the kinematic model, is found in the determination of i using the BeAtlas grid. The stellar rotational rate was found to be very close (~96%) to the critical value. Despite being derived purely from the fit to interferometric data, our best-fit HDUST model provides a very reasonable match to non-interferometric observables of o Aquarii: the observed spectral energy distribution, H α and Br γ line profiles, and polarimetric quantities. Finally, our analysis of multi-epoch H α profiles and imaging polarimetry indicates that the disk structure has been (globally) stable for at least 20 yr. Conclusions. Looking at the visible continuum and Br γ emission line only, o Aquarii fits in the global scheme of Be stars and their circumstellar disk: a (nearly) Keplerian rotating disk well described by the viscous decretion disk (VDD) model. However, the data in the H α line shows a substantially different picture that cannot fully be understood using the current generation of physical models of Be star disks. The Be star o Aquarii presents a stable disk (close to the steady-state), but, as in previous analyses, the measured m is lower than the standard value in the VDD model for the steady-state regime ( m = 3.5). This suggests that some assumptions of this model should be reconsidered. Also, such long-term disk stability could be understood in terms of the high rotational rate that we measured for this star, the rate being a main source for the mass injection in the disk. Our results on the stellar rotation and disk stability are consistent with results in the literature showing that late-type Be stars are more likely to be fast rotators and have stable disks. 
    more » « less
  2. Abstract

    Accretion signatures from bound brown dwarf and protoplanetary companions provide evidence for ongoing planet formation, and accreting substellar objects have enabled new avenues to study the astrophysical mechanisms controlling the formation and accretion processes. Delorme 1 (AB)b, a ∼30–45 Myr circumbinary planetary-mass companion, was recently discovered to exhibit strong Hαemission. This suggests ongoing accretion from a circumplanetary disk, somewhat surprising given canonical gas disk dispersal timescales of 5–10 Myr. Here, we present the first NIR detection of accretion from the companion in Paβ, Paγ, and Brγemission lines from SOAR/TripleSpec 4.1, confirming and further informing its accreting nature. The companion shows strong line emission, withLline≈ 1–6 × 10−8Lacross lines and epochs, while the binary host system shows no NIR hydrogen line emission (Lline< 0.32–11 × 10−7L). Observed NIR hydrogen line ratios are more consistent with a planetary accretion shock than with local line excitation models commonly used to interpret stellar magnetospheric accretion. Using planetary accretion shock models, we derive mass accretion rate estimates ofṀpla3–4 × 10−8MJyr−1, somewhat higher than expected under the standard star formation paradigm. Delorme 1 (AB)b’s high accretion rate is perhaps more consistent with formation via disk fragmentation. Delorme 1 (AB)b is the first protoplanet candidate with clear (signal-to-noise ratio ∼5) NIR hydrogen line emission.

    more » « less

    We present a statistical analysis of the He ii 4686 emission line in the spectra of the black hole and Wolf–Rayet (WR) star of the high-mass X-ray binary IC10 X-1. This line is visibly skewed, and the third moment (skewness) varies with the binary’s orbital phase. We describe a new method of extracting such weak/faint features lying barely above a noisy continuum. Using the moments of these features, we have been able to decompose these skewed lines into two symmetric Gaussian profiles as a function of the orbital phase. The astrophysical implications of this decomposition are significant due to the complex nature of wind–accretion stream interactions in such binary systems. Previous studies have already shown a 0.25 phase lag in the radial velocity curve of the star and the X-ray eclipse, which indicates that the He ii emitters might be in the stellar wind, hence not tracing the star’s orbital motion. Results from this work further suggest the existence of two separate emitting regions, one in the stellar wind in the shadow of the WR star and another in the accretion stream that impacts the black hole’s outer accretion disc; and the observed skewed He ii lines can be reproduced by superposition of the two corresponding time-dependent Gaussian emission profiles.

    more » « less
  4. Abstract

    We present two decades of new high-angular-resolution near-infrared data from the W. M. Keck Observatory that reveal extreme evolution in X7, an elongated dust and gas feature, presently located half an arcsecond from the Galactic Center supermassive black hole. With both spectro-imaging observations of Br-γline emission andLp(3.8μm) imaging data, we provide the first estimate of its orbital parameters and quantitative characterization of the evolution of its morphology and mass. We find that the leading edge of X7 appears to be on a mildly eccentric (e∼ 0.3), relatively short-period (170 yr) orbit and is headed toward periapse passage, estimated to occur in ∼2036. Furthermore, our kinematic measurements rule out the earlier suggestion that X7 is associated with the stellar source S0-73 or with any other point source that has overlapped with X7 during our monitoring period. Over the course of our observations, X7 has (1) become more elongated, with a current length-to-width ratio of 9, (2) maintained a very consistent long-axis orientation (position angle of 50°), (3) inverted its radial velocity differential from tip to tail from −50 to +80 km s−1, and (4) sustained its total brightness (12.8Lpmagnitudes at the leading edge) and color temperature (425 K), which suggest a constant mass of ∼50MEarth. We present a simple model showing that these results are compatible with the expected effect of tidal forces exerted on it by the central black hole, and we propose that X7 is the gas and dust recently ejected from a grazing collision in a binary system.

    more » « less
  5. Abstract

    Close binary systems present challenges to planet formation. As binary separations decrease, so do the occurrence rates of protoplanetary disks in young systems and planets in mature systems. For systems that do retain disks, their disk masses and sizes are altered by the presence of the binary companion. Through the study of protoplanetary disks in binary systems with known orbital parameters, we seek to determine the properties that promote disk retention and therefore planet formation. In this work, we characterize the young binary−disk system FO Tau. We determine the first full orbital solution for the system, finding masses of0.350.05+0.06Mand 0.34 ± 0.05Mfor the stellar components, a semimajor axis of22(1+2)au, and an eccentricity of0.21(0.03+0.04). With long-baseline Atacama Large Millimeter/submillimeter Array interferometry, we detect 1.3 mm continuum and12CO (J= 2–1) line emission toward each of the binary components; no circumbinary emission is detected. The protoplanetary disks are compact, consistent with being truncated by the binary orbit. The dust disks are unresolved in the image plane, and the more extended gas disks are only marginally resolved. Fitting the continuum and CO visibilities, we determine the inclination of each disk, finding evidence for alignment of the disk and binary orbital planes. This study is the first of its kind linking the properties of circumstellar protoplanetary disks to a precisely known binary orbit. In the case of FO Tau, we find a dynamically placid environment (coplanar, low eccentricity), which may foster its potential for planet formation.

    more » « less