ABSTRACT We present a statistical analysis of the He ii 4686 emission line in the spectra of the black hole and Wolf–Rayet (WR) star of the high-mass X-ray binary IC10 X-1. This line is visibly skewed, and the third moment (skewness) varies with the binary’s orbital phase. We describe a new method of extracting such weak/faint features lying barely above a noisy continuum. Using the moments of these features, we have been able to decompose these skewed lines into two symmetric Gaussian profiles as a function of the orbital phase. The astrophysical implications of this decomposition are significant due to the complex nature of wind–accretion stream interactions in such binary systems. Previous studies have already shown a 0.25 phase lag in the radial velocity curve of the star and the X-ray eclipse, which indicates that the He ii emitters might be in the stellar wind, hence not tracing the star’s orbital motion. Results from this work further suggest the existence of two separate emitting regions, one in the stellar wind in the shadow of the WR star and another in the accretion stream that impacts the black hole’s outer accretion disc; and the observed skewed He ii lines can be reproduced by superposition of the two corresponding time-dependent Gaussian emission profiles.
more »
« less
Characterising the orbit and circumstellar environment of the high-mass binary MWC 166 A
Context. Stellar evolution models are highly dependent on accurate mass estimates, especially for highly massive stars in the early stages of stellar evolution. The most direct method for obtaining model-independent stellar masses is derivation from the orbit of close binaries. Aims. Our aim was to derive the first astrometric plus radial velocity orbit solution for the single-lined spectroscopic binary star MWC 166 A, based on near-infrared interferometry over multiple epochs and ∼100 archival radial velocity measurements, and to derive fundamental stellar parameters from this orbit. A supplementary aim was to model the circumstellar activity in the system from K band spectral lines. Methods. The data used include interferometric observations from the VLTI instruments GRAVITY and PIONIER, as well as the MIRC-X instrument at the CHARA Array. We geometrically modelled the dust continuum to derive relative astrometry at 13 epochs, determine the orbital elements, and constrain individual stellar parameters at five different age estimates. We used the continuum models as a base to examine differential phases, visibilities, and closure phases over the Br γ and He I emission lines in order to characterise the nature of the circumstellar emission. Results. Our orbit solution suggests a period of P = 367.7 ± 0.1 d, approximately twice as long as found with previous radial velocity orbit fits. We derive a semi-major axis of 2.61 ± 0.04 au at d = 990 ± 50 pc, an eccentricity of 0.498 ± 0.001, and an orbital inclination of 53.6 ± 0.3°. This allowed the component masses to be constrained to M 1 = 12.2 ± 2.2 M ⊙ and M 2 = 4.9 ± 0.5 M ⊙ . The line-emitting gas was found to be localised around the primary and is spatially resolved on scales of ∼11 stellar radii, where the spatial displacement between the line wings is consistent with a rotating disc. Conclusions. The large spatial extent and stable rotation axis orientation measured for the Br γ and He I line emission are inconsistent with an origin in magnetospheric accretion or boundary-layer accretion, but indicate an ionised inner gas disc around this Herbig Be star. We observe line variability that could be explained either with generic line variability in a Herbig star disc or V/R variations in a decretion disc scenario. We have also constrained the age of the system, with relative flux ratios suggesting an age of ∼(7 ± 2)×10 5 yr, consistent with the system being composed of a main-sequence primary and a secondary still contracting towards the main-sequence stage.
more »
« less
- PAR ID:
- 10366717
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 665
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A146
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Accretion signatures from bound brown dwarf and protoplanetary companions provide evidence for ongoing planet formation, and accreting substellar objects have enabled new avenues to study the astrophysical mechanisms controlling the formation and accretion processes. Delorme 1 (AB)b, a ∼30–45 Myr circumbinary planetary-mass companion, was recently discovered to exhibit strong Hαemission. This suggests ongoing accretion from a circumplanetary disk, somewhat surprising given canonical gas disk dispersal timescales of 5–10 Myr. Here, we present the first NIR detection of accretion from the companion in Paβ, Paγ, and Brγemission lines from SOAR/TripleSpec 4.1, confirming and further informing its accreting nature. The companion shows strong line emission, withLline≈ 1–6 × 10−8L⊙across lines and epochs, while the binary host system shows no NIR hydrogen line emission (Lline< 0.32–11 × 10−7L⊙). Observed NIR hydrogen line ratios are more consistent with a planetary accretion shock than with local line excitation models commonly used to interpret stellar magnetospheric accretion. Using planetary accretion shock models, we derive mass accretion rate estimates of –4 × 10−8MJyr−1, somewhat higher than expected under the standard star formation paradigm. Delorme 1 (AB)b’s high accretion rate is perhaps more consistent with formation via disk fragmentation. Delorme 1 (AB)b is the first protoplanet candidate with clear (signal-to-noise ratio ∼5) NIR hydrogen line emission.more » « less
-
Aims. We present a detailed visible and near-infrared spectro-interferometric analysis of the Be-shell star o Aquarii from quasi-contemporaneous CHARA/VEGA and VLTI/AMBER observations. Methods. We analyzed spectro-interferometric data in the H α (VEGA) and Br γ (AMBER) lines using models of increasing complexity: simple geometric models, kinematic models, and radiative transfer models computed with the 3D non-LTE code HDUST. Results. We measured the stellar radius of o Aquarii in the visible with a precision of 8%: 4.0 ± 0.3 R ⊙ . We constrained the circumstellar disk geometry and kinematics using a kinematic model and a MCMC fitting procedure. The emitting disk sizes in the H α and Br γ lines were found to be similar, at ~10–12 stellar diameters, which is uncommon since most results for Be stars indicate a larger extension in H α than in Br γ . We found that the inclination angle i derived from H α is significantly lower (~15°) than the one derived from Br γ : i ~ 61.2° and 75.9°, respectively. While the two lines originate from a similar region of the disk, the disk kinematics were found to be near to the Keplerian rotation (i.e., β = −0.5) in Br γ ( β ~ −0.43), but not in H α ( β ~ −0.30). After analyzing all our data using a grid of HDUST models (BeAtlas), we found a common physical description for the circumstellar disk in both lines: a base disk surface density Σ 0 = 0.12 g cm −2 and a radial density law exponent m = 3.0. The same kind of discrepancy, as with the kinematic model, is found in the determination of i using the BeAtlas grid. The stellar rotational rate was found to be very close (~96%) to the critical value. Despite being derived purely from the fit to interferometric data, our best-fit HDUST model provides a very reasonable match to non-interferometric observables of o Aquarii: the observed spectral energy distribution, H α and Br γ line profiles, and polarimetric quantities. Finally, our analysis of multi-epoch H α profiles and imaging polarimetry indicates that the disk structure has been (globally) stable for at least 20 yr. Conclusions. Looking at the visible continuum and Br γ emission line only, o Aquarii fits in the global scheme of Be stars and their circumstellar disk: a (nearly) Keplerian rotating disk well described by the viscous decretion disk (VDD) model. However, the data in the H α line shows a substantially different picture that cannot fully be understood using the current generation of physical models of Be star disks. The Be star o Aquarii presents a stable disk (close to the steady-state), but, as in previous analyses, the measured m is lower than the standard value in the VDD model for the steady-state regime ( m = 3.5). This suggests that some assumptions of this model should be reconsidered. Also, such long-term disk stability could be understood in terms of the high rotational rate that we measured for this star, the rate being a main source for the mass injection in the disk. Our results on the stellar rotation and disk stability are consistent with results in the literature showing that late-type Be stars are more likely to be fast rotators and have stable disks.more » « less
-
ABSTRACT Planets are thought to form at the early stage of stellar evolution when mass accretion is still ongoing. RY Tau is a T Tauri type star at the age of a few Myr, with an accretion disc seen at high inclination, so that the line of sight crosses both the wind and accretion gas flows. In a long series of spectroscopic monitoring of the star over the period 2013–2020, we detected variations in H$$\, {\alpha }$$ and Na i D absorptions at radial velocities of infall (accretion) and outflow (wind) with a period of about 22 d. The absorptions in the infalling and outflowing gas streams vary in antiphase: an increase of infall is accompanied by a decrease of outflow, and vice versa. These ‘flip-flop’ oscillations retain phase over several years of observations. We suggest that this may result from the magnetohydrodynamics processes at the disc–magnetosphere boundary in the propeller mode. Another possibility is that a massive planet is modulating some processes in the disc and is providing the observed effects. The period, if Keplerian, corresponds to a distance of 0.2 au, which is close to the dust sublimation radius in this star. The presence of the putative planet can be confirmed by radial velocity measurements: the expected amplitude is ≥90 m s−1 if the planet mass is ≥2 MJ.more » « less
-
We present an analysis of CO rovibrational emission lines in the 183 infrared spectra of nearby Class II objects obtained with the NIRSPEC instrument on the Keck II telescope over the past two decades. The sample includes a broad range of stellar mass (both T Tauri and Herbig Ae/Be) and disk evolutionary states (from full to debris disks). We find that 53% of the sample has CO rovibrational emission lines present in their spectrum with disk/stellar subtype detection rates of 82% for transition disks, 61% for Herbigs, and 77% for classical T Tauri stars. Although there is no discernible difference between T Tauri and Herbig Ae/Be star CO detection rates, the detection of accretion and of CO are statistically correlated in T Tauri stars but not in Herbig Ae/Be objects. Within the sample of T Tauri stars, we find that no weak-line T Tauri stars have CO rovibrational emission lines. We use slab modeling to analyze the density, temperature, and emitting area of the sample. The retrieval results imply that Herbig Ae/Be objects tend to have cooler and larger CO emitting regions than T Tauri stars. We find that the CO emitting area is not a thin ring as defined by temperature, but a ring of varying size, likely dependent on the structure of the disk. We also present guidelines on how to approach CO rovibrational emission lines in JWST spectra and present methods for linking ground-based observations with JWST spectra. This includes line-to-continuum ratio estimates based on stellar mass and accretion rate.more » « less
An official website of the United States government

