skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hallett‐Mossop Rime Splintering Dims Cumulus Clouds Over the Southern Ocean: New Insight From Nudged Global Storm‐Resolving Simulations
Abstract In clouds containing both liquid and ice with temperatures between −3°C and −8°C, liquid droplets collide with large ice crystals, freeze, and shatter, producing a plethora of small ice splinters. This process, known as Hallett‐Mossop rime splintering, and other forms of secondary ice production, can cause clouds to reflect less sunlight and to have shorter lifetimes. We show its impact on Southern Ocean shallow cumuli using a novel suite of five global storm‐resolving simulations, which partition the Earth's atmosphere into 2–4 km wide columns. We evaluate simulated clouds and radiation over the Southern Ocean with aircraft observations from the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES), and satellite observations from Clouds and the Earth's Radiant Energy System (CERES) and Himawari. Simulations with large concentrations of ice crystals in boundary layer clouds, which agree better with SOCRATES observations, have reduced mixed‐phase cumulus cloud cover and weaker shortwave cloud radiative effects (CREs) that are less biased compared with CERES. Using a pair of simulations differing only in their treatment of Hallett‐Mossop rime splintering, we show that including this process increases ice crystal concentrations in cumulus clouds and weakens shortwave CREs over the Southern Ocean by 10 W m−2. We also demonstrate the key role that global storm‐resolving models can play in detangling the effects of clouds on Earth's climate across scales, making it possible to trace the impact of changes in individual cumulus cloud anvils (10 km2) on the radiative budget of the massive Southern Ocean basin (107 km2).  more » « less
Award ID(s):
1743753
PAR ID:
10366780
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
3
Issue:
2
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Maritime boundary‐layer clouds over the Southern Ocean (SO) have a large shortwave radiative effect. Yet, climate models have difficulties in representing these clouds and, especially, their phase in this observationally sparse region. This study aims to increase the knowledge of SO cloud phase by presenting in‐situ cloud microphysical observations from the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study (SOCRATES). We investigate the occurrence of ice in summertime marine stratocumulus and cumulus clouds in the temperature range between 6 and −25°C. Our observations show that in ice‐containing clouds, maximum ice number concentrations of up to several hundreds per liter were found. The observed ice crystal concentrations were on average one to two orders of magnitude higher than the simultaneously measured ice nucleating particle (INP) concentrations in the temperature range below −10°C and up to five orders of magnitude higher than estimated INP concentrations in the temperature range above −10°C. These results highlight the importance of secondary ice production (SIP) in SO summertime marine boundary‐layer clouds. Evidence for rime splintering was found in the Hallett‐Mossop (HM) temperature range but the exact SIP mechanism active at lower temperatures remains unclear. Finally, instrument simulators were used to assess simulated co‐located cloud ice concentrations and the role of modeled HM rime‐splintering. We found that CAM6 is deficient in simulating number concentrations across the HM temperature range with little sensitivity to the model HM process, which is inconsistent with the aforementioned observational evidence of highly active SIP processes in SO low‐level clouds. 
    more » « less
  2. Abstract Climate models struggle to accurately represent the highly reflective boundary layer clouds overlying the remote and stormy Southern Ocean. We use in situ aircraft observations from the Southern Ocean Clouds, Radiation and Aerosol Transport Experimental Study (SOCRATES) to evaluate Southern Ocean clouds in a cloud‐resolving large‐eddy simulation (LES) and two coarse resolution global atmospheric models, the CESM Community Atmosphere Model (CAM6) and the GFDL Atmosphere Model (AM4), run in a nudged hindcast framework. We develop six case studies from SOCRATES data which span the range of observed cloud and boundary layer properties. For each case, the LES is run once forced purely using reanalysis data (fifth generation European Centre for Medium‐Range Weather Forecasts atmospheric reanalysis, “ERA5 based”) and once strongly nudged to an aircraft profile(“Obs based”). The ERA5‐based LES can be compared with the global models, which are also nudged to reanalysis data and are better for simulating cumulus. The Obs‐based LES closely matches an observed cloud profile and is useful for microphysical comparisons and sensitivity tests and simulating multilayer stratiform clouds. We use two‐moment Morrison microphysics in the LES and find that it simulates too few frozen particles in clouds occurring within the Hallett‐Mossop temperature range. We tweak the Hallett‐Mossop parameterization so that it activates within boundary layer clouds, and we achieve better agreement between observed and simulated microphysics. The nudged global climate models (GCMs) simulate liquid‐dominated mixed‐phase clouds in the stratiform cases but excessively glaciate cumulus clouds. Both GCMs struggle to represent two‐layer clouds, and CAM6 has low droplet concentrations in all cases and underpredicts stratiform cloud‐driven turbulence. 
    more » « less
  3. Abstract Recent studies have suggested a correct representation of cloud phase in the Southern Ocean region is important in climate models for an accurate representation of the energy balance. Satellite retrievals indicate many of the clouds are predominantly liquid, despite their low temperatures. However, clouds containing high numbers of ice crystals have sometimes been observed in this region and implicated the secondary ice production process called rime splintering. This study re‐examines rime splintering in Southern Ocean cumuli using both a new data set and high‐resolution numerical modeling. Measurements acquired during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) provide an evaluation of the amount of ice in shallow cumuli sampled over two days in this region. The measurements sometimes exhibit seven orders of magnitude or more ice particles compared to amounts expected from measurements of ice‐nucleating particles (INP) on the same days. Cumuli containing multiple updrafts had the greatest tendency to contain high ice concentrations and meet the expected conditions for rime splintering. Idealized numerical modeling, constrained by the observations, suggests that the multiple updrafts produce more frozen raindrops/graupel, and allow them to travel through the rime‐splintering zone over an extended period of time, increasing the number of ice particles by many orders of magnitude. The extremely low number of INP in the Southern Ocean thus appears to require special conditions like multiple updrafts to help glaciate the cumuli in this region, potentially explaining the predominance of supercooled cumuli observed there. 
    more » « less
  4. Abstract An atmospheric river affecting Australia and the Southern Ocean on 28–29 January 2018 during the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) is analyzed using nadir‐pointing W‐band cloud radar measurements and in situ microphysical measurements from a Gulfstream‐V aircraft. The AR had a two‐band structure, with the westernmost band associated with a cold frontal boundary. The bands were primarily stratiform with distinct radar bright banding. The microphysical evolution of precipitation is described in the context of the tropical‐ and midlatitude‐sourced moisture zones above and below the 0°C isotherm, respectively, identified in Part I. In the tropical‐sourced moisture zone, ice particles at temperatures less than −8°C had concentrations on the order of 10 L−1, with habits characteristic of lower temperatures, while between −8°C and −4°C, an order of magnitude increase in ice particle concentrations was observed, with columnar habits consistent with Hallett‐Mossop secondary ice formation. Ice particles falling though the 0°C level into the midlatitude‐sourced moisture region and melting provided “seed” droplets from which subsequent growth by collision‐coalescence occurred. In this region, raindrops grew to sizes of 3 mm and precipitation rates averaged 16 mm hr−1
    more » « less
  5. Abstract This study uses cloud and radiative properties collected from in situ and remote sensing instruments during two coordinated campaigns over the Southern Ocean between Tasmania and Antarctica in January–February 2018 to evaluate the simulations of clouds and precipitation in nudged‐meteorology simulations with the CAM6 and AM4 global climate models sampled at the times and locations of the observations. Fifteen SOCRATES research flights sampled cloud water content, cloud droplet number concentration, and particle size distributions in mixed‐phase boundary layer clouds at temperatures down to −25°C. The 6‐week CAPRICORN2 research cruise encountered all cloud regimes across the region. Data from vertically pointing 94 GHz radars deployed was compared with radar simulator output from both models. Satellite data were compared with simulated top‐of‐atmosphere (TOA) radiative fluxes. Both models simulate observed cloud properties fairly well within the variability of observations. Cloud base and top in both models are generally biased low. CAM6 overestimates cloud occurrence and optical thickness while cloud droplet number concentrations are biased low, leading to excessive TOA reflected shortwave radiation. In general, low clouds in CAM6 precipitate at the same frequency but are more homogeneous compared to observations. Deep clouds are better simulated but produce snow too frequently. AM4 underestimates cloud occurrence but overestimates cloud optical thickness even more than CAM6, causing excessive outgoing longwave radiation fluxes but comparable reflected shortwave radiation. AM4 cloud droplet number concentrations match observations better than CAM6. Precipitating low and deep clouds in AM4 have too little snow. Further investigation of these microphysical biases is needed for both models. 
    more » « less