skip to main content


Title: Rupture Process of the 7 January 2020, M W 6.4 Puerto Rico Earthquake
Abstract

A vigorous shallow earthquake sequence along the southern coast of Puerto Rico commenced on 28 December 2019 in a region with little prior large seismicity. The largest event in the sequence (MW = 6.4), struck on 7 January 2020 and involved normal faulting. It produced extensive damage in southern Puerto Rico and power disruption across the island. Nearby strong ground motions and static offsets from GPS stations along with teleseismic recordings are inverted for the kinematic rupture process of the mainshock. The ~15‐km‐long rupture is spatially concentrated, with most slip between 3 and 13 km deep and peak slip of ~1.6 m. The static stress drop is high, ~19 MPa, with the rupture locating in the eastern section of a ~30‐km‐long band of seismicity bisected by a near‐orthogonal lineation. Complex faulting and high stress in the intraplate region appears to be responsible for the high earthquake productivity.

 
more » « less
Award ID(s):
1802364
NSF-PAR ID:
10366796
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    On 29 July 2021, anMW8.2 thrust‐faulting earthquake ruptured offshore of the Alaska Peninsula within the rupture zone of the 1938MW8.2 earthquake. The spatiotemporal distribution of megathrust slip is resolved by jointly inverting regional and teleseismic broadband waveforms along with co‐seismic static and high‐rate GNSS displacements. The primarily unilateral rupture expanded northeastward, away from the rupture zone of the 22 July 2020MW7.8 Shumagin earthquake. Large slip extends along approximately 175 km, spanning about two third of the estimated 1938 aftershock zone, with well‐bounded depth from 20 to 40 km, and up to 8.6 m slip near the hypocenter. The rupture terminated in the eastern portion of the 1938 aftershock zone in a region of very large geodetic slip deficit where peak slip appears to have occurred in the 1938 rupture. The 2021 and 1938 events do not have similar slip distributions and do not indicate persistent asperities.

     
    more » « less
  2. Abstract

    A great earthquake struck the Semidi segment of the plate boundary along the Alaska Peninsula on 29 July 2021, re‐rupturing part of the 1938 rupture zone. The 2021MW8.2 Chignik earthquake occurred just northeast of the 22 July 2020MW7.8 Simeonof earthquake, with little slip overlap. Analysis of teleseismicPandSHwaves, regional Global Navigation Satellite System (GNSS) displacements, and near‐field and far‐field tsunami observations provides a good resolution of the 2021 rupture process. During ∼60‐s long faulting, the slip was nonuniformly distributed along the megathrust over depths from 32 to 40 km, with up to ∼12.9‐m slip in an ∼170‐km‐long patch. The 40–45 km down‐dip limit of slip is well constrained by GNSS observations along the Alaska Peninsula. Tsunami observations preclude significant slip from extending to depths <25 km, confining all coseismic slip to beneath the shallow continental shelf. Most aftershocks locate seaward of the large‐slip zones, with a concentration of activity up‐dip of the deeper southwestern slip zone. Some localized aftershock patches locate beneath the continental slope. The surface‐wave magnitudeMSof 8.1 for the 2021 earthquake is smaller thanMS = 8.3–8.4 for the 1938 event. Seismic and tsunami data indicate that slip in 1938 was concentrated in the eastern region of its aftershock zone, extending beyond the Semidi Islands, where the 2021 event did not rupture.

     
    more » « less
  3. Abstract

    The eastern portion of the Shumagin gap along the Alaska Peninsula ruptured in anMW7.8 thrust earthquake on 22 July 2020. The megathrust fault space‐time slip history is determined by joint inversion of regional and teleseismic waveform data along with co‐seismic static Global Navigation Satellite System (GNSS) displacements. The rupture expanded westward and along‐dip from the hypocenter, located adjacent to the 1938MW8.2 Alaska earthquake, with slip and aftershocks extending into the gap about 180 to 205 km, respectively, at depths from 15 to 40 km. The deeper half of ~75% of the Shumagin gap experienced faulting. However, the patchy slip is significantly less than possible accumulated slip since the region's last major rupture in 1917, compatible with geodetic seismic‐coupling estimates of 10‐40% beneath the Shumagin Islands. The rupture terminated in the western region of very low seismic coupling. There was a regional decade‐scale decrease in b‐value prior to the 2020 event.

     
    more » « less
  4. Abstract

    The 12 November 2017Mw 7.3 Ezgeleh‐Sarpolzahab earthquake is the largest instrumentally recorded earthquake in the Zagros Simply Folded Belt by a factor of ∼10 in seismic moment. Exploiting local, regional, and teleseismic data and synthetic aperture radar interferometry imagery, we characterize the rupture, its aftershock sequence, background seismicity, and regional tectonics. The mainshock ruptured slowly (∼2 km/s), unilaterally southward, for ∼40 km along an oblique (dextral‐thrust) fault that dips ∼14°E beneath the northwestern Lurestan arc. Slip is confined to basement depths of ∼12–18 km, resolvably beneath the sedimentary cover which is ∼8 km thick in this area. The gentle dip angle and basement location allow for a broad slip area, explaining the large magnitude relative to earthquakes in the main Fars arc of the Zagros, where shallower, steeper faults are limited in rupture extent by weak sedimentary layers. Early aftershocks concentrate around the southern and western edges of the mainshock slip area and therefore cluster in the direction of rupture propagation, implying a contribution from dynamic triggering. A cluster of events ∼100 km to the south near Mandali (Iraq) reactivated the ∼50° dipping Zagros Foredeep Fault. The basement fault responsible for the Ezgeleh‐Sarpolzahab earthquake probably accounts for the ∼1 km elevation contrast between the Lurestan arc and the Kirkuk embayment but is distinct from sections of the Mountain Front Fault that define frontal escarpments elsewhere in the Zagros. It may be related to a seismic interface underlying the central and southern Lurestan arc, and a key concern is whether or not the more extensive regional structure is also seismogenic.

     
    more » « less
  5. Abstract

    To better quantify how injection, prior seismicity, and fault properties control rupture growth and propagation of induced earthquakes, we perform a finite‐fault slip inversion on aMw4.0 earthquake that occurred in April 2015, the largest earthquake in an induced sequence near Guthrie, Oklahoma. The slip inversion reveals a rupture with slip patches that are anti‐correlated to the locations of prior seismicity. The prior seismicity driven by low pore pressure changes and static stress changes occurred on weaker portions of the fault, while theMw4.0 earthquake likely ruptured relatively stronger portions of the fault. To resolve if pore pressure changes or the initial underlying stress distribution and fault strength controlled the final slip distribution of the GuthrieMw4.0 earthquake, we compare strike‐slip events of similar magnitude from tectonically active regions and previously inactive regions. Earthquakes on reactivated faults exhibit different slip distributions than active regions, they have more prominent and well separated slip patches, a behavior often associated with faults of lower fault maturity. Pore pressure shows little effect on the distributions. These observations suggest that the initial underlying stress distribution and fault strength of reactivated faults in low deformation regions is the primary controlling factor of the slip distribution with pore pressure perturbations and earthquake interactions being secondary. Therefore, GuthrieMw4.0 earthquakes slip distribution was enhanced by pore‐pressure perturbations and earthquake interactions by creating an optimal stress state for its failure, but the slip distribution itself is controlled by its fault's initial stress and strength state.

     
    more » « less