skip to main content


Title: The Combined Influence of Lower Band Chorus and ULF Waves on Radiation Belt Electron Fluxes at Individual L ‐Shells
Abstract

We investigate the timing and relative influence of VLF in the chorus frequency range observed by the DEMETER spacecraft and ULF wave activity from ground stations on daily changes in electron flux (0.23 to over 2.9 MeV) observed by the HEO‐3 spacecraft. At eachL‐shell, we use multiple regression to investigate the effects of each wave type and each daily lag independent of the others. We find that reduction and enhancement of electrons occur at different timescales. Chorus power spectral density and ULF wave power are associated with immediate electron decreases on the same day but with flux enhancement 1–2 days later. ULF is nearly always more influential than chorus on both increases and decreases of flux, although chorus is often a significant factor. There was virtually no difference in correlations of ULF Pc3, Pc4, or Pc5 with electron flux. A synergistic interaction between chorus and ULF waves means that enhancement is most effective when both waves are present, pointing to a two‐step process where local acceleration by chorus waves first energizes electrons which are then brought to even higher energies by inward radial diffusion due to ULF waves. However, decreases in flux due to these waves act additively. Chorus and ULF waves combined are most effective at describing changes in electron flux at >1.5 MeV. At lowerL(2–3), correlations between ULF and VLF (likely hiss) with electron flux were low. The most successful models, overL = 4–6, explained up to 47.1% of the variation in the data.

 
more » « less
Award ID(s):
2013648 1651263
NSF-PAR ID:
10366947
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
5
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1–2 days. By contrast, High‐Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing its dynamics. This in turn has an effect on the charged particles trapped in the outer radiation belt. Although the high‐energy electron flux enhancements have received considerable attention, the high‐energy electron flux enhancement pattern (L > 4) has not. This paper identifies 37 events with this enhancement pattern in the high‐energy electron flux during the Van Allen Probes era. We find the enhancements coincident with HSS occurrence. The interplanetary magnetic field (IMF) exhibits north/south Bz fluctuations of Alfvénic nature with moderate amplitudes. The high‐energy electron flux enhancements also correspond to long periods of auroral activity indicating a relationship to magnetotail dynamics. However, the AE index only reaches moderate values. Ultra‐Low Frequency waves were present in all of the events and whistler‐mode chorus waves were present in 89.1% of the events, providing a convenient scenario for wave‐particle interactions. The radial gradient of the ULF wave power related to theL, under the influence of the HSSs, is necessary to trigger the physical processes responsible for this type of high‐energy electron flux enhancement pattern.

     
    more » « less
  2. Abstract

    Many factors influence relativistic outer radiation belt electron fluxes, such as waves in the ultralow frequency (ULF) Pc5, very low frequency (VLF), and electromagnetic ion cyclotron (EMIC) frequency bands, seed electron flux, Dst disturbance levels, substorm occurrence, and solar wind inputs. In this work we compared relativistic electron flux poststorm versus prestorm using three methods of analysis: (1) multiple regression to predict flux values following storms, (2) multiple regression to predict the size and direction of the change in electron flux, and (3) multiple logistic regression to predict only the probability of the flux rising or falling. We determined which is the most predictive model and which factors are most influential. We found that a linear regression predicting the difference in prestorm and poststorm flux (Model 2) results in the highest validation correlations. The logistic regression used in Model 3 had slightly weaker predictive abilities than the other two models but had the most value in providing a prediction of the probability of the electron flux increasing after a storm. Of the variables used (ULF Pc5 and VLF, seed electrons, substorm activity, and EMIC waves), the most influential in the final model were ULF Pc5 waves and the seed electrons. IMF Bz, Dst, and solar wind number density, velocity, and pressure did not improve any of the models, and were deemed unnecessary for effective predictions.

     
    more » « less
  3. Abstract

    We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$\Delta L\sim 0.56$ΔL0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$L\sim 5-7$L57at dusk, while a smaller subset exists at$L\sim 8-12$L812at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L$L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$\sim 1.45$1.45MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

     
    more » « less
  4. Abstract

    Although lagged correlations have suggested influences of solar wind velocity (V) and number density (N), Bz, ultralow frequency (ULF) wave power, and substorms (as measured by the auroral electrojet (AE) index) on MeV electron flux at geosynchronous orbit over an impressive number of hours and days, a satellite's diurnal cycle can inflate correlations, associations between drivers may produce spurious effects, and correlations between all previous time steps may create an appearance of additive influence over many hours. Autoregressive‐moving average transfer function (ARMAX) multiple regressions incorporating previous hours simultaneously can eliminate cycles and assess the impact of parameters, at each hour, while others are controlled. ARMAX influences are an order of magnitude lower than correlations uncorrected for time behavior. Most influence occurs within a few hours, not the many hours suggested by correlation. A log transformation accounts for nonlinearities. Over all hours, solar wind velocity (V) and number density (N) show an initial negative impact, with longer term positive influences over the 9 (V) or 27 (N) hr. Bz is initially a positive influence, with a longer term (6 hr) negative effect. ULF waves impact flux in the first (positive) and second (negative) hour before the flux measurement, with further negative influences in the 12–24 hr before. AE (representing electron injection by substorms) shows only a short term (1 hr) positive influence. However, when only recovery and after‐recovery storm periods are considered (using stepwise regression), there are positive influences of ULF waves, AE, andV, with negative influences ofNand Bz.

     
    more » « less
  5. Abstract

    In this study, using Van Allen Probes observations we identify 81 events of electron flux bursts with butterfly pitch angle distributions for tens of keV electrons with close correlations with chorus wave bursts in the Earth's magnetosphere. We use the high‐rate electron flux data from Magnetic Electron Ion Spectrometer available during 2013–2019 and the simultaneous whistler‐mode wave measurements from Electric and Magnetic Field Instrument Suite and Integrated Science to identify the correlated events. The events are categorized into 67 upper‐band chorus (0.5–0.8fce) dominated events and 14 other events where lower‐band chorus (0.05–0.5fce) has modest or strong amplitudes (fcerepresents electron cyclotron frequency). Each electron flux burst correlated with chorus has a short timescale of ∼1 min or less, suggesting potential nonlinear effects. The statistical distribution of selected electron burst events tends to occur in the post‐midnight sector atL > 5 under disturbed geomagnetic conditions, and is associated with chorus waves with relatively strong magnetic wave amplitude and small wave normal angle. The frequency dependence of the electron flux peaks agrees with the cyclotron resonant condition, indicating the effects of chorus‐induced electron acceleration. Our study provides new insights into understanding the rapid nonlinear interactions between chorus and energetic electrons.

     
    more » « less