skip to main content


Title: Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
Abstract

Snap‐through bistability is often observed in nature (e.g., fast snapping to closure of Venus flytrap) and the life (e.g., bottle caps and hair clippers). Recently, harnessing bistability and multistability in different structures and soft materials has attracted growing interest for high‐performance soft actuators and soft robots. They have demonstrated broad and unique applications in high‐speed locomotion on land and under water, adaptive sensing and fast grasping, shape reconfiguration, electronics‐free controls with a single input, and logic computation. Here, an overview of integrating bistable and multistable structures with soft actuating materials for diverse soft actuators and soft/flexible robots is given. The mechanics‐guided structural design principles for five categories of basic bistable elements from 1D to 3D (i.e., constrained beams, curved plates, dome shells, compliant mechanisms of linkages with flexible hinges and deformable origami, and balloon structures) are first presented, alongside brief discussions of typical soft actuating materials (i.e., fluidic elastomers and stimuli‐responsive materials such as electro‐, photo‐, thermo‐, magnetic‐, and hydro‐responsive polymers). Following that, integrating these soft materials with each category of bistable elements for soft bistable and multistable actuators and their diverse robotic applications are discussed. To conclude, perspectives on the challenges and opportunities in this emerging field are considered.

 
more » « less
Award ID(s):
2126072
NSF-PAR ID:
10366995
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
19
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Soft actuators are typically designed to be inherently stress‐free and stable. Relaxing such a design constraint allows exploration of harnessing mechanical prestress and elastic instability to achieve potential high‐performance soft robots. Here, the strategy of prestrain relaxation is leveraged to design pre‐curved soft actuators in 2D and 3D with tunable monostability and bistability that can be implemented for multifunctional soft robotics. By bonding stress‐free active layer with embedded pneumatic channels to a uniaxially or biaxially pre‐stretched elastomeric strip or disk, pre‐curved 2D beam‐like bending actuators and 3D doming actuators are generated after prestrain release, respectively. Such pre‐curved soft actuators exhibit tunable monostable and bistable behavior under actuation by simply manipulating the prestrain and the biased bilayer thickness ratio. Their implications in multifunctional soft robotics are demonstrated in achieving high performance in manipulation and locomotion, including energy‐efficient soft gripper to holding objects through prestress, fast‐speed larva‐like jumping soft crawler with average locomotion speed of 0.65 body‐length s−1(51.4 mm s−1), and fast swimming bistable jellyfish‐like soft robot with an average speed of 53.3 mm s−1.

     
    more » « less
  2. Abstract

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open‐mesh shaped ultrathin deformable heaters, sensors of single‐crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon‐black‐doped liquid‐crystal elastomer (LCE‐CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE‐CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots.

     
    more » « less
  3. Abstract

    The creatures in nature exhibit dynamic responses to environmental stimuli through their hierarchical architectures. Benefiting from gradient porous structures,Delosperma nakurenseopens its protective valves of the seed capsules when hydrated with liquid water, increasing the likelihood that seeds are dispersed under conditions favorable to germination. Here, a versatile 4D printing technology, namely liquid crystal templating‐assisted vat photopolymerization (LCT‐VPP), which can fabricate bioinspired porous structures with hygro‐responsive capabilities by utilizing photopolymerization induced phase separation (PIPS) and liquid crystals (LCs) electro‐alignment is reported. PIPS within the LCs/nanofiller composites leads to the formation of submicrometer gradient porous structures after extracting nonreactive LCs. The electric field enables the programmable alignment of LCs, which in turn elongates the porous structures and aligns nanofillers. In addition, the programmable arranged nanofillers by the templated LCs enhance the degree of deformation and thus the resulting composites exhibit high shape control accuracy, fast dynamic response, and high reliability. This study opens a perspective for designing bioinspired smart materials with the special spatial distribution of porous structures. The results reported here can give rise to various potential applications in soft robots, smart anticounterfeiting devices, flexible sensors, and ultrafiltration membrane.

     
    more » « less
  4. Abstract

    Matching the rich multimodality of natural organisms, i.e., the ability to transition between crawling and swimming, walking and jumping, etc., represents a grand challenge in the fields of soft and bio‐inspired robotics. Here, a multimodal soft robot locomotion using highly compact and dynamic bistable soft actuators is achieved. These actuators are composed of a prestretched membrane sandwiched between two 3D printed frames with embedded shape memory alloy (SMA) coils. The actuator can swiftly transform between two oppositely curved states and generate a force of 0.3 N through a snap‐through instability that is triggered after 0.2 s of electrical activation with an input power of 21.1 ± 0.32W(i.e., electrical energy input of 4.22 ± 0.06J. The consistency and robustness of the snap‐through actuator response is experimentally validated through cyclical testing (580 cycles). The compact and fast‐responding properties of the soft bistable actuator allow it to be used as an artificial muscle for shape‐reconfigurable soft robots capable of multiple modes of SMA‐powered locomotion. This is demonstrated by creating three soft robots, including a reconfigurable amphibious robot that can walk on land and swim in water, a jumping robot (multimodal crawler) that can crawl and jump, and a caterpillar‐inspired rolling robot that can crawl and roll.

     
    more » « less
  5. Shape-memory actuators allow machines ranging from robots to medical implants to hold their form without continuous power, a feature especially advantageous for situations where these devices are untethered and power is limited. Although previous work has demonstrated shape-memory actuators using polymers, alloys, and ceramics, the need for micrometer-scale electro–shape-memory actuators remains largely unmet, especially ones that can be driven by standard electronics (~1 volt). Here, we report on a new class of fast, high-curvature, low-voltage, reconfigurable, micrometer-scale shape-memory actuators. They function by the electrochemical oxidation/reduction of a platinum surface, creating a strain in the oxidized layer that causes bending. They bend to the smallest radius of curvature of any electrically controlled microactuator (~500 nanometers), are fast (<100-millisecond operation), and operate inside the electrochemical window of water, avoiding bubble generation associated with oxygen evolution. We demonstrate that these shape-memory actuators can be used to create basic electrically reconfigurable microscale robot elements including actuating surfaces, origami-based three-dimensional shapes, morphing metamaterials, and mechanical memory elements. Our shape-memory actuators have the potential to enable the realization of adaptive microscale structures, bio-implantable devices, and microscopic robots.

     
    more » « less