skip to main content


Title: Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots
Abstract

Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open‐mesh shaped ultrathin deformable heaters, sensors of single‐crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon‐black‐doped liquid‐crystal elastomer (LCE‐CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE‐CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots.

 
more » « less
NSF-PAR ID:
10051044
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
30
Issue:
13
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Snap‐through bistability is often observed in nature (e.g., fast snapping to closure of Venus flytrap) and the life (e.g., bottle caps and hair clippers). Recently, harnessing bistability and multistability in different structures and soft materials has attracted growing interest for high‐performance soft actuators and soft robots. They have demonstrated broad and unique applications in high‐speed locomotion on land and under water, adaptive sensing and fast grasping, shape reconfiguration, electronics‐free controls with a single input, and logic computation. Here, an overview of integrating bistable and multistable structures with soft actuating materials for diverse soft actuators and soft/flexible robots is given. The mechanics‐guided structural design principles for five categories of basic bistable elements from 1D to 3D (i.e., constrained beams, curved plates, dome shells, compliant mechanisms of linkages with flexible hinges and deformable origami, and balloon structures) are first presented, alongside brief discussions of typical soft actuating materials (i.e., fluidic elastomers and stimuli‐responsive materials such as electro‐, photo‐, thermo‐, magnetic‐, and hydro‐responsive polymers). Following that, integrating these soft materials with each category of bistable elements for soft bistable and multistable actuators and their diverse robotic applications are discussed. To conclude, perspectives on the challenges and opportunities in this emerging field are considered.

     
    more » « less
  2. null (Ed.)
    Artificial muscles based on stimuli-responsive polymers usually exhibit mechanical compliance, versatility, and high power-to-weight ratio, showing great promise to potentially replace conventional rigid motors for next-generation soft robots, wearable electronics, and biomedical devices. In particular, thermomechanical liquid crystal elastomers (LCEs) constitute artificial muscle-like actuators that can be remotely triggered for large stroke, fast response, and highly repeatable actuations. Here, we introduce a digital light processing (DLP)–based additive manufacturing approach that automatically shear aligns mesogenic oligomers, layer-by-layer, to achieve high orientational order in the photocrosslinked structures; this ordering yields high specific work capacity (63 J kg −1 ) and energy density (0.18 MJ m −3 ). We demonstrate actuators composed of these DLP printed LCEs’ applications in soft robotics, such as reversible grasping, untethered crawling, and weightlifting. Furthermore, we present an LCE self-sensing system that exploits thermally induced optical transition as an intrinsic option toward feedback control. 
    more » « less
  3. Abstract

    Matching the rich multimodality of natural organisms, i.e., the ability to transition between crawling and swimming, walking and jumping, etc., represents a grand challenge in the fields of soft and bio‐inspired robotics. Here, a multimodal soft robot locomotion using highly compact and dynamic bistable soft actuators is achieved. These actuators are composed of a prestretched membrane sandwiched between two 3D printed frames with embedded shape memory alloy (SMA) coils. The actuator can swiftly transform between two oppositely curved states and generate a force of 0.3 N through a snap‐through instability that is triggered after 0.2 s of electrical activation with an input power of 21.1 ± 0.32W(i.e., electrical energy input of 4.22 ± 0.06J. The consistency and robustness of the snap‐through actuator response is experimentally validated through cyclical testing (580 cycles). The compact and fast‐responding properties of the soft bistable actuator allow it to be used as an artificial muscle for shape‐reconfigurable soft robots capable of multiple modes of SMA‐powered locomotion. This is demonstrated by creating three soft robots, including a reconfigurable amphibious robot that can walk on land and swim in water, a jumping robot (multimodal crawler) that can crawl and jump, and a caterpillar‐inspired rolling robot that can crawl and roll.

     
    more » « less
  4.  
    more » « less
  5. Soft robots actuate themselves and their world through induced pressure and strain, and can often sense these quantities as well. We hypothesize that coordination in a tightly coupled collective of soft robots can be achieved with purely proprioceptive sensing and no direct communication. In this paper, we target a platform of soft pneumatic modules capable of sensing strain on their perimeter, with the goal of using only the robots' own soft actuators and sensors as a medium for distributed coordination. However, methods for modelling, sensing, and controlling strain in such soft robot collectives are not well understood. To address this challenge, we introduce and validate a computationally efficient spring-based model for two-dimensional sheets of soft pneumatic robots. We then translate a classical consensus algorithm to use only proprioceptive data, test in simulation, and show that due to the physical coupling between robots we can achieve consensus-like coordination. We discuss the unique challenges of strain sensors and next steps to bringing these findings to hardware. These findings have promising potential for smart materials and large-scale collectives, because they omit the need for additional communication infrastructure to support coordination. 
    more » « less