Abstract New geochronologic and paleomagnetic data from the North American Midcontinent Rift (MCR) reveal the synchronous emplacement of the Beaver River diabase, the anorthosite xenoliths within it, and the Greenstone Flow—one of the largest lava flows on Earth. A U‐Pb zircon date of 1091.83 0.21 Ma (2) from one of the anorthosite xenoliths is consistent with the anorthosite cumulate forming as part of the MCR and provides a maximum age constraint for the Beaver River diabase. Paired with the minimum age constraint of a cross‐cutting Silver Bay intrusion (1091.61 0.14 Ma; 2), these data tightly bracket the age of the Beaver River diabase to be 1091.7 0.2 Ma (95% CI), coeval with the eruption of the Greenstone Flow (1091.59 0.27 Ma; 2)—which is further supported by indistinguishable tilt‐corrected paleomagnetic pole positions. Geochronological, paleomagnetic, mineralogical and geochemical data are consistent with a hypothesis that the Beaver River diabase was the feeder system for the Greenstone Flow. The large areal extent of the intrusives and large estimated volume of the volcanics suggest that they represent a rapid and voluminous ca. 1,092 Ma magmatic pulse near the end of the main stage of MCR magmatism.
more »
« less
Bias Corrected Estimation of Paleointensity (BiCEP): An Improved Methodology for Obtaining Paleointensity Estimates
Abstract The assumptions of paleointensity experiments are violated in many natural and archeological materials, leading to Arai plots which do not appear linear and yield inaccurate paleointensity estimates, leading to bias in the result. Recently, paleomagnetists have adopted sets of “selection criteria” that exclude specimens with nonlinear Arai plots from the analysis, but there is little consensus in the paleomagnetic community on which set to use. In this study, we present a statistical method we call Bias Corrected Estimation of Paleointensity (BiCEP), which assumes that the paleointensity recorded by each specimen is biased away from a true answer by an amount that is dependent a single metric of nonlinearity (the curvature parameter) on the Arai plot. We can use this empirical relationship to estimate the recorded paleointensity for a specimen where, that is, a perfectly straight line. We apply the BiCEP method to a collection of 30 sites for which the true value of the original field is well constrained. Our method returns accurate estimates of paleointensity, with similar levels of accuracy and precision to restrictive sets of paleointensity criteria, but accepting as many sites as permissive criteria. The BiCEP method has a significant advantage over using these selection criteria because it achieves these accurate results without excluding large numbers of specimens from the analysis. It yields accurate, albeit imprecise estimates from sites whose specimens all fail traditional criteria. BiCEP combines the accuracy of the strictest selection criteria with the low failure rates of the less reliable “loose” criteria.
more »
« less
- Award ID(s):
- 1827263
- PAR ID:
- 10367021
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 22
- Issue:
- 8
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Inclination is the angle of a magnetization vector from horizontal. Clastic sedimentary rocks often experience inclination shallowing whereby syn‐ to post‐depositional processes result in flattened detrital remanent magnetizations relative to local geomagnetic field inclinations. The deviation of recorded inclinations from true values presents challenges for reconstructing paleolatitudes. A widespread approach for estimating flattening factors (f) compares the shape of an assemblage of magnetization vectors to that derived from a paleosecular variation model (the elongation/inclination [E/I] method). Few studies exist that compare the results of this statistical approach with empirically determined flattening factors and none in the Proterozoic Eon. In this study, we evaluate inclination shallowing within 1.1 billion‐year‐old, hematite‐bearing red beds of the Cut Face Creek Sandstone that is bounded by lava flows of known inclination. Taking this inclination from the volcanics as the expected direction, we found that detrital hematite remanence is flattened withwhereas the pigmentary hematite magnetization shares a common mean with the volcanics. Using the pigmentary hematite direction as the expected inclination results in. These flattening factors are consistent with those estimated through the E/I methodsupporting its application in deep time. However, all methods have significant uncertainty associated with determining the flattening factor. This uncertainty can be incorporated into paleomagnetic poles with the resulting ellipse approximated with a Kent distribution. Rather than seeking to find “the flattening factor,” or assuming a single value, the inherent uncertainty in flattening factors should be recognized and incorporated into paleomagnetic syntheses.more » « less
-
Abstract Previously, Tsurutani and Lakhina (2014,https://doi.org/10.1002/2013GL058825) created estimates for a “perfect” interplanetary coronal mass ejection and performed simple calculations for the response of geospace, including. In this study, these estimates are used to drive a coupled magnetohydrodynamic‐ring current‐ionosphere model of geospace to obtain more physically accurate estimates of the geospace response to such an event. The sudden impulse phase is examined and compared to the estimations of Tsurutani and Lakhina (2014,https://doi.org/10.1002/2013GL058825). The physics‐based simulation yields similar estimates for Dst rise, magnetopause compression, and equatorialvalues as the previous study. However, results diverge away from the equator.values in excess of 30 nT/s are found as low asmagnetic latitude. Under southward interplanetary magnetic field conditions, magnetopause erosion combines with strong region one Birkeland currents to intensify theresponse. Values obtained here surpass those found in historically recorded events and set the upper threshold of extreme geomagnetically induced current activity at Earth.more » « less
-
Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive.more » « less
-
Abstract Global ocean mean salinityis a key indicator of the Earth's hydrological cycle and the exchanges of freshwater between land and ocean, but its determination remains a challenge. Aside from traditional methods based on gridded salinity fields derived from in situ measurements, we explore estimates ofbased on liquid freshwater changes derived from space gravimetry data corrected for sea ice effects. For the 2005–2019 period analyzed, the differentseries show little consistency in seasonal, interannual, and long‐term variability. In situ estimates show sensitivity to choice of product and unrealistic variations. A suspiciously large rise insince ∼2015 is enough to measurably affect halosteric sea level estimates and can explain recent discrepancies in the global mean sea level budget. Gravimetry‐basedestimates are more realistic, inherently consistent with estimated freshwater contributions to global mean sea level, and provide a way to calibrate the in situ estimates.more » « less
An official website of the United States government
